

PET Six-Month Monitoring Report 2014-2

Evidence from Primary Studies and Systematic Reviews and Recommendations from Clinical Practice Guidelines July to December 2014

R. Poon and the Program in Evidence-Based Care Disease Site Group Reviewers

Program in Evidence-Based Care (PEBC), Cancer Care Ontario (CCO)

Report Date: June 19, 2015

QUESTION

What is the role of positron emission tomography (PET) in the clinical management of patients with cancer, sarcoidosis, or epilepsy with respect to:

- Diagnosis and staging
- Assessment of treatment response
- Detection and restaging of recurrence
- Evaluation of metastasis

Outcomes of interest are survival, quality of life, prognostic indicators, time until recurrence, safety outcomes (e.g., avoidance of unnecessary surgery), and change in clinical management.

INTRODUCTION

In 2010, the Ontario PET Steering Committee (the Committee) requested that Program in Evidence-Based Care (PEBC) provide regular updates to the Committee of recently published literature reporting on the use of PET in patients with cancer, sarcoidosis, or epilepsy. The PEBC recommended a regular monitoring program be implemented, with a systematic review of recent evidence conducted every six months. The Committee approved this proposal, and this is the eighth issue of the six-month monitoring reports. This report is intended to be a high-level, brief summary of the identified evidence, and not a detailed evaluation of its quality and relevance.

METHODS

Literature Search Strategy

Full articles and abstracts published between July and December 2014 were systematically searched through MEDLINE and EMBASE for evidence from primary studies and systematic reviews. The search strategies used are available on request to the PEBC.

Inclusion Criteria for Clinical Practice Guidelines

Any clinical practice guidelines that contained recommendations with respect to PET were included. Study design was not a criterion for inclusion or exclusion.

Pediatric studies were included in this report and will be included in subsequent reports. The decision was made by the Committee based on the formation of a Pediatric PET Subcommittee that will explore and report on indications relating to PET in pediatric cancer.

Inclusion Criteria for Primary Studies

Articles were selected for inclusion in the systematic review of the evidence if they were fully published, English-language reports of studies that met the following criteria:

- 1. Studied the use of 18-fluorodeoxyglucose (FDG) PET in cancer, sarcoidosis, or epilepsy in humans.
- 2. Evaluated the use of the following radiopharmaceutical tracers:
 - ⁶⁸Ga-DOTA-(NOC, TOC, TATE) •
 - ¹⁸F, ¹¹C-choline (prostate cancer) •
 - •
 - ¹⁸F-FET ([¹⁸F]fluoroethyl-L-tyrosine) (brain)
 ¹⁸F-FLT ([¹⁸F]3-deoxy-³F-fluorothymidine) (various)
 - •
 - ¹⁸F-MISO [[¹⁸F]fluoromisonidazole) (hypoxia tracer)
 ¹⁸F-FAZA ([¹⁸F]fluoroazomycin arabinoside) (hypoxia tracer) •
 - ¹⁸F-fluoride (more accurate than bone scanning) •
 - ¹⁸F-flurpiridaz (cardiac) •
 - ¹⁸F-florbetapir (Amyvid) (dementia imaging)
- 3. Published as a full article in a peer-reviewed journal.
- 4. Reported evidence related to change in patient clinical management or clinical outcomes OR reported diagnostic accuracy of PET compared with an alternative diagnostic modality.
- 5. Used a suitable reference standard (pathological and clinical follow-up) when appropriate.
- 6. Included \geq 12 patients for prospective study/randomized controlled trial or \geq 50 patients for retrospective study with the disease of interest.

Inclusion Criteria for Systematic Reviews

- 1. Reviewed the use of FDG PET/computed tomography (CT) in cancer, sarcoidosis, or epilepsy.
- 2. Contained evidence related to diagnostic accuracy; change in patient clinical management, clinical outcomes, or treatment response; survival; quality of life; prognostic indicators; time until recurrence; or safety outcome (e.g., avoidance of unnecessary surgery).

Exclusion Criteria

1. Letters and editorials.

RESULTS

Literature Search Results

Primary Studies and Systematic Reviews

Forty-nine studies from July to December 2014 met the inclusion criteria. A summary of the evidence from the 49 studies can be found in Appendix 1A: Summary of Studies from July to December 2014.

Breast Cancer

Three studies met the inclusion criteria (1-3). Compared with conventional explorations, FDG PET/CT upstaged 21.1% of patients and downstaged 16.2%. Stage migration

led to management and/or intent to treat changes in 12.7% of cases (1). In patients with invasive T1 breast cancer, FDG PET/CT demonstrated excellent specificity (100%) in the detection of axillary metastases, but sensitivity (73%) was suboptimal (2). Another study showed that FDG PET/CT has a high positive predictive value (87.1%) for internal mammary lymph node metastasis in clinical stage III breast cancer (3).

Epilepsy

One study met the inclusion criteria (4). With electrocorticography as the referential parameter, PET was more sensitive but less specific than magnetic resonance imaging (MRI) in the localization of the epileptogenic focus. The specificity of PET improved when its data were coregistered with MRI and electrocorticography.

Gastrointestinal Cancer

Six studies met the inclusion criteria (5-10). A comparison of diagnostic performance between FDG PET/CT and other radiological imaging techniques in resectable colorectal liver metastasis patients showed that FDG PET/CT had the lowest sensitivity and accuracy. The sensitivity and accuracy of FDG PET/CT decreased significantly in patients treated with preoperative chemotherapy (5). However, FDG PET/CT changed the management in 23% of patients who were initially deemed operable by CT. As a result, patients staged by FDG PET/CT showed significantly better survival than patients staged by CT alone (6). Following radiofrequency ablation of liver metastases, FDG PET/CT achieved the highest sensitivity for detecting residual tumour within two days of treatment (9). In another study, FDG PET/CT was superior to CT in the staging of colon cancer. For instance, FDG PET/CT correctly rejected lung metastases in 40% and liver metastases in 8% of patients falsely suspected on CT (7). FDG PET/CT also changed the staging and management of 14.1% of rectal cancer patients (8). The use of FDG PET/CT is limited in staging gastric cancer and appeared to be inferior to contrast-enhanced CT in the detection of region lymph node metastasis (10).

Genitourinary Cancer

Two studies met the inclusion criteria (11,12). For the assessment of patients with testicular tumour, FDG PET/CT showed good overall sensitivity (92%) and specificity (84%) for the detection of seminoma lesions. Although the specificity (95%) remained high, the sensitivity decreased to 77% for nonseminoma forms. In addition, FDG PET/CT provided valuable information that allowed clinical management to be changed in 87% of cases (11). In the staging of bladder cancer, FDG PET/CT (54%) was more sensitive than CT (41%) for detecting metastatic disease outside of the pelvis, whereas both FDG PET/CT and CT displayed equally low sensitivity (46%) for detecting pelvic lymph node disease (12).

Gynecologic Cancer

Three studies met the inclusion criteria (13-15). FDG PET/CT was shown to have high diagnostic value (accuracy: 96.8%) in the evaluation of patients with recurrent ovarian cancer and was particularly helpful in guiding therapeutic planning (13). In one prospective study of patients with suspected ovarian cancer, FDG PET/CT and whole-body diffusion-weighted MRI showed comparable accuracy for primary tumour characterization and for detecting retroperitoneal lymphadenopathies, both of which were superior to CT. However, FDG PET/CT (71%) showed lower accuracy for peritoneal staging compared with whole-body diffusion-weighted MRI (91%) and CT (75%) (14). Pooled estimates from a systematic review illustrated that FDG PET or FDG PET/CT had high diagnostic sensitivity and specificity for detecting distant metastasis (87% and 97%, respectively) and local regional recurrence (82% and 98%, respectively) in patients with cervical cancer (15).

Head and Neck Cancer

Five studies met the inclusion criteria (16-20). The diagnostic accuracy of FDG PET/CT was shown to be superior or comparable to standard conventional imaging for the detection of malignant lesions (17) and for the assessment of head and neck squamous cell carcinoma (18). Furthermore, a meta-analysis reported high sensitivity (pooled estimate: 92%) and specificity (pooled estimate: 95%) for FDG PET/CT in detecting distant metastases in patients with suspected recurrent disease after definitive treatment (16). In 41.6% of patients with differentiated thyroid carcinoma, FDG PET/CT revealed the precise anatomical localization of recurrent lesions not seen on I^{131} scan (19). The use of FDG PET/CT to assess treatment response at three months demonstrated poor sensitivity in patients with human papillomavirus-associated oropharyngeal cancer. FDG PET/CT surveillance after three months was more accurate in detecting locoregional recurrence (20).

Hematology Cancer

Eight studies met the inclusion criteria (21-28). Four of the studies evaluated the utility of FDG PET/CT in patients with diffuse large B-cell lymphoma (21-23,26). Using bone marrow biopsy as the reference standard, FDG PET/CT was found to be accurate and complementary for detecting bone marrow involvement. Overall, FDG PET/CT upstaged 6.9% to 28% of patients with negative bone marrow biopsy (21-23). The other study demonstrated FDG PET/CT to be an accurate predictor (93.5%) of relapse after completion of chemotherapy (26). One randomized controlled trial compared the use of FDG PET/CT with the use of ultrasound/chest radiography for follow up of patients with advanced-stage Hodgkin lymphoma. The sensitivity for detection of relapse was similar for the two imaging techniques. However, FDG PET/CT showed lower specificity (86.3% versus 96.3%, p=0.02) and positive predictive value (72.7% versus 90.7%, p=0.01) than ultrasound/chest radiography (25). In the surveillance of transformed indolent lymphoma, FDG PET/CT demonstrated limited clinical benefit in detecting relapse (27). With regard to radiation treatment planning, the addition of FDG PET/CT led to substantial changes in gross tumour volume and clinical target volume (24,28).

Melanoma

One study met the inclusion criteria (29). A systematic review reported high overall sensitivity (pooled estimate: 89.4%) and specificity (pooled estimate: 88.8%) for FDG PET or FDG PET/CT in detecting systemic metastases. A change in stage and/or clinical management was noted in 22% of patients.

Non-Small Cell Lung Cancer and Other Lung Cancer

Eight studies met the inclusion criteria (30-37). The integration of FDG PET/CT as a first-line diagnostic tool to a rapid outpatient diagnostic program produced high sensitivity (97.7%) but poor specificity (60.2%) in the detection pulmonary malignancy (30). Results from two meta-analyses supported the use of FDG PET or FDG PET/CT in the differential diagnosis between malignant and benign pleural lesions and in the assessment of pleural abnormalities in cancer patients, with a superior diagnostic performance over CT alone in both clinical settings (32,33). In newly diagnosed non-small cell lung cancer (NSCLC) patients, FDG PET/CT detected distant unexpected metastases on thorax CT in 28.8% (35). In advanced NSCLC patients, FDG PET/CT was more sensitive than ^{99m}Tc-MDP bone scintigraphy in the detection of bone metastases (36). FDG PET/CT scan after treatment of NSCLC with stereotactic body radiation therapy was specific (94%) but insensitive (50%) for detecting recurrence or treatment failure (37).

Non-FDG Tracers

Seven studies met the inclusion criteria (38-44). Three of the studies evaluated ¹¹Ccholine PET/CT only (38,40,41) while one meta-analysis included both ¹¹C- and ¹⁸F-choline PET/CT (39). In patients with bladder cancer, ¹¹C-choline PET/CT displayed low sensitivity (42%) but was more accurate than contrast-enhanced CT in the detection of lymph node metastases (38). In patients with prostate cancer, ¹¹C-choline PET/CT also showed low sensitivity (57.1%) comparable to conventional imaging for lymph node metastases (40) and low positive predictive value (34.8%) for detecting single node recurrence (41). Despite the low sensitivity (pooled estimate: 59%) for detecting pelvic lymph node metastases, ¹¹C/¹⁸Fcholine PET/CT led to a treatment change in 41% of patients, of which 25% had complete prostate-specific antigen response (39). PET/CT imaging with ⁶⁸Ga-DOTA-NOC was evaluated in the other three studies (42-44). ⁶⁸Ga-DOTA-NOC PET/CT was shown to be highly accurate in diagnosing neuroendocrine tumours (43) and superior to FDG PET/CT for detecting gastroenteropancreatic neuroendocrine tumours (42). Similarly, ⁶⁸Ga-DOTA-NOC PET/CT (accuracy: 88.7%) was superior to ¹³¹I-MIBG scintigraphy (accuracy: 66.6%) in the diagnosis of pheochromocytoma (44).

Pancreatic Cancer

Two studies met the inclusion criteria (45,46). The authors of a meta-analysis concluded that FDG PET/CT offered no benefit over current primary diagnostic tools (i.e., CT, MRI) in confirming suspected pancreatic cancer (45). In another study, FDG PET/CT detected unsuspected distant metastases in 33% of patients previously evaluated with conventional CT (46).

Pediatric Cancer

One study met the inclusion criteria (47). FDG PET/CT was found to have a low positive predictive value in the staging or post-treatment evaluation of pediatric patients with Hodgkin (65%) and non-Hodgkin (61%) lymphoma. The positive predictive value was higher for other high-grade solid tumours (81%). Negative FDG PET/CT results could reliably predict the absence of malignancy in all forms of cancer (negative predictive value: 100%).

Sarcoma

One study met the inclusion criteria (48). A prospective study reported good accuracy (89.6%) for FDG PET/CT in differentiating benign from malignant solid soft-tissue lesions.

CLINICAL EXPERT REVIEW

Breast Cancer

No recommendations currently exist for the utilization of PET/CT in breast cancer.

Reviewer's Comments (Dr. Muriel Brackstone)

The three studies identified in this six-month period are insufficient to change current guidelines. One prospective study (T2 or greater tumours) used liver ultrasound and chest xconsider CT ray as the conventional imaging, when most physicians would chest/abdomen/pelvis and bone scan to be the current appropriate staging investigation. Additionally, histological confirmation of upstaging was present in 25% of cases and clinical follow-up for confirmation in 35% of cases; therefore, there are insufficient data from this study alone to confirm the findings of the PET scan (given that a significant amount of downstaging was seen as well as upstaging). In another prospective study, the sensitivity for axillary staging in early tumours is much lower than the current sentinel lymph node biopsy procedure (false negative rate 4% to 8%); therefore, FDG PET/CT does not appear to be a

useful staging procedure for early breast cancers. With respect to the retrospective study that evaluated the utility of PET/CT in identifying internal mammary nodal disease in 249 stage III breast cancer patients, there was no comparator imaging study. Sixty-two of 249 patients had visible internal mammary nodes on PET/CT, which were deemed positive for metastases. Unfortunately, only one-half (n=31) of those patients had histological confirmation of disease.

Overall, in order to confirm the utility of an imaging test for the purposes of staging cancer patients, studies should demonstrate histological or clinical confirmation of disease, particularly in patients who have been upstaged or downstaged using FDG PET/CT. The high positive predictive value seen in PET/CT evaluating internal mammary lymph node metastasis is promising, because this may be an area not as well assessed clinically or with current imaging; however, further studies are required given a lack of confirmation of disease. With the high sensitivity of sentinel lymph node biopsy, it is not expected that PET/CT will be found useful in staging early breast cancer.

Epilepsy

Current Recommendations for the Utilization of PET in Epilepsy

- ¹⁸F-FDG PET is recommended for the presurgical evaluation of adult and pediatric patients with medically intractable focal or partial epilepsy in the setting of a comprehensive epilepsy surgery program within a Regional Epilepsy Surgery Centre of Excellence.
- Due to insufficient evidence, a recommendation cannot be made for or against the use of ¹⁸F-FDG PET in the detection of cortical malformations in patients with intractable infantile spasms when MRI or CT fails to show structural abnormalities.
- Due to insufficient evidence, a recommendation cannot be made for or against the use of ¹⁸F-FDG PET/MRI coregistration in the presurgical evaluation of patients with medically intractable epilepsy.

Reviewer's Comments (Dr. Jorge Burneo)

The current recommendations for the utilization of PET in epilepsy remain valid and no changes are required.

Gastrointestinal Cancer

Current Insured Indication (Colorectal Cancer)

Where recurrent disease is suspected on the basis of an elevated and/or rising carcinoembryronic antigen level(s) during follow-up after surgical resection but standard imaging tests are negative or equivocal; or prior to surgery for liver metastases from colorectal cancer when the procedure is high risk (e.g., multiple staged liver resection or vascular reconstruction); or where the patient is at high risk for surgery (e.g., American Society of Anesthesiology score ≥4).

Current Recommendations for the Utilization of PET/CT in Colorectal Cancer

- The routine use of PET is not recommended for the diagnosis or staging of clinical stage I-III colorectal cancers.
- PET is recommended for determining management and prognosis if conventional imaging is equivocal for the presence of metastatic disease.
- The routine use of PET is not recommended for the measurement of treatment response in locally advanced rectal cancer before and after preoperative chemotherapy.

- PET is not recommended for routine surveillance in patients with colorectal cancer treated with curative surgery at high risk for recurrence.
- PET is recommended to determine the site of recurrence in the setting of rising carcinoembryonic antigen when a conventional workup fails to unequivocally identify metastatic disease.
- PET is recommended in the preoperative assessment of colorectal cancer liver metastasis prior to surgical resection.

Reviewer's Comments (Dr. Anand Swaminath)

The current recommendations for the utilization of PET/CT in gastrointestinal cancer remain valid and no changes are required. However, the Ozis et al (8) study is interesting, given a considerable amount of patients were upstaged with PET in the primary staging of colorectal cancer. While it does not necessitate a change in the current recommendation at this time, it would be worthwhile to keep a close eye on future studies as they come through and consider discussing them if there is consistent evidence of a benefit of PET in a prospective fashion.

Genitourinary Cancer

Current Recommendations for the Utilization of PET/CT in Testicular Cancer

- A recommendation cannot be made for or against the use of PET in the routine staging of patients with testicular cancer due to insufficient evidence.
- PET is recommended for the assessment of treatment response in patients with seminoma and residual masses after chemotherapy.
- PET is not recommended for the assessment of treatment response in patients with nonseminoma.
- A recommendation cannot be made for or against the routine use of PET for evaluation of recurrence due to insufficient evidence.

Reviewer's Comments (Dr. Glen Bauman)

The current recommendations for the utilization of PET/CT in genitourinary cancer remain valid and no changes are required.

Gynecologic Cancer

Current Recommendations for the Utilization of PET/CT in Cervical Cancer

- PET is not recommended for diagnosis of cervical cancer.
- PET is not recommended for staging early stage cervical cancer.
- A recommendation cannot be made for or against the use of PET for staging advancedstage cervical cancer due to insufficient evidence. However, ongoing studies will clarify the role of PET in advanced disease.
- PET is not recommended (following or early during therapy) for the purpose of predicting response to chemoradiation therapy.
- A recommendation cannot be made for or against the use of PET for evaluation of suspected recurrence, due to insufficient evidence.
- PET is recommended for women with recurrence who are candidates for pelvic exenteration or chemoradiation with curative intent.

Current Recommendations for the Utilization of PET/CT in Ovarian Cancer

• PET is not recommended in the diagnosis of ovarian cancer.

- A recommendation cannot be made for or against the use of PET in the evaluation of asymptomatic ovarian mass due to insufficient evidence.
- PET is not recommended for staging of ovarian cancer.
- PET is not recommended for detecting recurrence or restaging patients not being considered for surgery.
- A recommendation cannot be made for or against the use of PET for patients being considered for secondary cytoreduction due to insufficient evidence.

Reviewer's Comments (Dr. Anthony Fyles)

The current recommendations for the utilization of PET/CT in gynecologic cancer remain valid and no changes are required. The studies are either methodologically flawed or lack novelty. A previous study demonstrated that the addition of PET/CT led to a change in radiotherapy treatment in 25% of patients with cervical cancer; however, this warrants further assessment. The recently completed PETLACE trial in Ontario will be of interest.

Head and Neck Cancer

Current Insured Indications

- Head and neck cancer:
 - for the evaluation of metastatic squamous cell carcinoma in neck nodes when the primary disease site is unknown after standard radiological and clinical investigation; or for the staging of nasopharyngeal cancer
- Thyroid cancer:
 - where recurrent or persistent disease is suspected on the basis of an elevated and/or rising thyroglobulin but standard imaging studies are negative or equivocal

Current Recommendations for the Utilization of PET/CT in Head and Neck Cancers

- PET is recommended in the M and bilateral nodal staging of all patients with head and neck squamous cell carcinoma where conventional imaging is equivocal, or where treatment may be significantly modified.
- PET is recommended in all patients after conventional imaging and in addition to, or prior to, diagnostic panendoscopy where the primary site is unknown.
- PET is recommended for staging and assessment of recurrence of patients with nasopharyngeal carcinoma if conventional imaging is equivocal.
- PET is recommended for restaging patients who are being considered for major salvage treatment, including neck dissection.

Reviewer's Comments (Dr. Amit Singnurkar)

The current recommendations for the utilization of PET/CT in head and neck cancer remain valid and no changes are required.

Hematologic Cancer

Current Registry Indication (Lymphoma Staging)

- PET for the staging of Hodgkin or non-Hodgkin lymphoma being treated with curative intent:
 - for the staging of limited disease as per conventional imaging, or

- \circ $\,$ when imaging is equivocal for differentiating between limited and advanced-stage disease
- PET for apparent limited-stage nodal follicular lymphoma or other indolent non-Hodgkin lymphomas where curative radiation therapy is being considered for treatment.

Current Insured Indication (Lymphoma)

• For the evaluation of residual mass(es) following chemotherapy in a patient with Hodgkin or non-Hodgkin lymphoma when further potentially curative therapy (such as radiation or stem cell transplantation) is being considered; or for the assessment of response in early stage Hodgkin lymphoma following two or three cycles of chemotherapy when chemotherapy is being considered as the definitive single modality therapy.

Current Recommendations for the Utilization of PET/CT in Hematologic Cancer

- When functional imaging is considered to be important in situations where anatomical imaging is equivocal and/or in potentially curable cases, a FDG PET/CT scan is recommended.
- When functional imaging is considered to be important in situations where anatomical imaging is equivocal and treatment choices may be affected in limited-stage indolent lymphomas, a FDG PET/CT scan is recommended.
- An FDG PET/CT scan is recommended for the assessment of early response in early stage (I or II) Hodgkin lymphoma following two or three cycles of chemotherapy when chemotherapy is being considered as the definitive single modality therapy, to inform completion of therapy or whether more therapy is warranted.
- In potentially curable cases, when functional imaging is considered to be important and conventional imaging is equivocal, a FDG PET/CT scan is recommended to investigate recurrence of Hodgkin lymphoma or non-Hodgkin lymphoma.
- An FDG PET/CT scan is recommended for the evaluation of residual mass(es) following chemotherapy in a patient with Hodgkin or non-Hodgkin lymphoma when further potentially curative therapy (such as radiation or stem cell transplantation) is being considered and when biopsy cannot be safely or readily performed.
- An FDG PET/CT scan is not recommended for the routine monitoring and surveillance of lymphoma.

Reviewer's Comments (Dr. Marc Freeman)

The current recommendations for the utilization of PET/CT in hematologic cancer remain valid and no changes are required.

Melanoma

Current Registry Indication

• For the staging of melanoma patients with localized "high-risk" tumours with potentially resectable disease; or for the evaluation of patients with melanoma and isolated metastasis at the time of recurrence when metastasectomy is being contemplated.

Current Recommendations for the Utilization of PET/CT in Melanoma

- PET is recommended for staging of high-risk patients with potentially resectable disease.
- PET is not recommended for the diagnosis of sentinel lymph node micrometastatic disease or for staging of I, IIa, or IIb melanoma.
- The routine use of PET or PET/CT is not recommended for the diagnosis of brain metastases.
- The routine use of PET is not recommended for the detection of primary uveal malignant melanoma.
- A recommendation cannot be made for or against the use of PET for the assessment of treatment response in malignant melanoma due to insufficient evidence.
- A recommendation cannot be made for or against the use of PET for routine surveillance due to insufficient evidence.
- PET is recommended for isolated metastases at time of recurrence or when contemplating metastectomy.

Reviewer's Comments (Dr. Tara Baetz)

The systematic review by Rodriguez Rivera et al (29) strongly supports the current recommendations for the utilization of PET/CT in melanoma. The strength of this article may suggest the use of PET be an insured service rather than on the PET registry in stage III patients.

Non-FDG Tracers

No recommendations currently exist for the utilization of PET/CT with non-FDG tracers.

Reviewer's Comments (Dr. Amit Singnurkar)

There is currently not enough evidence to support making appropriate recommendations for the use of PET/CT with non-FDG tracers.

Non-Small Cell Lung Cancer and Other Lung Cancer

Current Insured Indications

- Solitary pulmonary nodule:
 - a lung nodule for which a diagnosis could not be established by a needle biopsy due to unsuccessful attempted needle biopsy; the solitary pulmonary nodule is inaccessible to needle biopsy; or the existence of a contraindication to the use of needle biopsy
- NSCLC
 - where curative surgical resection is being considered
- Clinical stage III NSCLC
 - where potentially curative combined modality therapy with radical radiotherapy and chemotherapy is being considered
- Limited-disease small cell lung cancer
 - where combined modality therapy with chemotherapy and radiotherapy is being considered

Current Recommendations for the Utilization of PET/CT in Small Cell Lung Cancer

• PET is recommended for staging in patients with small cell lung cancer who are potential candidates for the addition of thoracic radiotherapy to chemotherapy.

- A recommendation cannot be made for or against the use of PET for the assessment of treatment response in small cell lung cancer due to insufficient evidence.
- A recommendation cannot be made for or against the use of PET for evaluation of recurrence or restaging due to insufficient evidence.
- A recommendation cannot be made for or against the use of PET when metastasectomy or stereotactic body radiation therapy is being contemplated for solitary metastases due to insufficient evidence.

Current Recommendations for the Utilization of PET/CT in Radiation Treatment Planning for Lung Cancer

• Combination PET-CT imaging data may be used as part of research protocols in radiation treatment planning. Current evidence does not support the routine use of PET-CT imaging data in radiation treatment planning at this time outside of a research setting.

Reviewer's Comments

A review was not completed by a member of the Lung Cancer Disease Site Group.

Pancreatic Cancer

Current Registry Indication

• For staging if the patient is a candidate for potentially curative surgical resection (pancreatectomy) as determined by conventional staging.

Current Recommendations for the Utilization of PET/CT in Pancreatic Cancer

- PET is not recommended for primary diagnosis of pancreatic cancer.
- PET is recommended for staging if a patient is a candidate for potentially curative surgical resection as determined by conventional staging.
- A recommendation cannot be made for or against the use of PET to guide clinical management based on assessment of treatment response due to insufficient evidence.
- PET is not recommended for clinical management of suspected recurrence, nor for restaging at the time of recurrence due to insufficient evidence and lack of effective therapeutic options.
- A recommendation cannot be made for or against the use of PET for staging if a solitary metastasis is identified at recurrence because there are no trials that identify the utility of PET scanning in this setting.

Reviewer's Comments (Dr. Anand Swaminath)

The current recommendations for the utilization of PET/CT in pancreatic cancer remain valid and no changes are required. The study by Chang et al (46) confirms the need of PET to rule out distant disease when considering radical treatment. However, these patients receiving radiation would not be surgical candidates likely due to significant locally advanced disease; therefore, it doesn't really support the claim. The meta-analysis conducted by Rijkers et al (45) continues to support the recommendation that PET is not useful in diagnosing primary pancreatic cancer.

Pediatric Cancer

Current Registry Indications (patients must be <18 years of age)

- For the following cancer types (International Classification for Childhood Cancer):
 - Bone/cartilage osteosarcoma, Ewing sarcoma
 - Connective/other soft tissue rhabdomyosarcoma, other

- Kidney renal tumour
- Liver hepatic tumour
- Lymphoma/post-transplant lymphoproliferative disorder Hodgkin lymphoma, non-Hodgkin lymphoma
- o Primary brain astrocytoma, medulloblastoma, ependymoma, other
- Reproductive germ cell tumour
- Sympathetic nervous system neuroblastoma MIBG-negative
- o Other Langerhans cell histiocytosis, melanoma of the skin, thyroid
- For the following indications:
 - o Initial staging
 - Monitoring response during treatment/determine response-based therapy
 - Rule out progression prior to further therapy
 - Suspected recurrence/relapse
 - Rule out persistent disease
 - Select optimal biopsy site

Reviewer's Comments

A review was not completed by a clinical expert in pediatric oncology.

Sarcoma

No recommendations currently exist for the utilization of PET/CT in sarcoma.

Reviewer's Comments (Dr. Gina Diprimio)

The article supports PET as an excellent staging tool and is believed to be underutilized in this area.

Funding

The PEBC is a provincial initiative of Cancer Care Ontario supported by the Ontario Ministry of Health and Long-Term Care. All work produced by the PEBC is editorially independent from the Ontario Ministry of Health and Long-Term Care.

Copyright

This report is copyrighted by Cancer Care Ontario; the report and the illustrations herein may not be reproduced without the express written permission of Cancer Care Ontario. Cancer Care Ontario reserves the right at any time, and at its sole discretion, to change or revoke this authorization.

Disclaimer

Care has been taken in the preparation of the information contained in this report. Nonetheless, any person seeking to apply or consult the report is expected to use independent medical judgment in the context of individual clinical circumstances or seek out the supervision of a qualified clinician. Cancer Care Ontario makes no representation or guarantees of any kind whatsoever regarding the report content or use or application and disclaims any responsibility for its application or use in any way.

Contact Information

For information about the PEBC and the most current version of all reports, please visit the CCO Web site at <u>http://www.cancercare.on.ca/</u> or contact the PEBC office at: Phone: 905-527-4322 ext. 42822 Fax: 905-526-6775 E-mail: <u>ccopgi@mcmaster.ca</u>

REFERENCES

- 1. Cochet A, Dygai-Cochet I, Riedinger JM, Humbert O, Berriolo-Riedinger A, Toubeau M, et al. ¹⁸F-FDG PET/CT provides powerful prognostic stratification in the primary staging of large breast cancer when compared with conventional explorations. Eur J Nucl Med Mol Imaging. 2014;41(3):428-37.
- 2. Koolen BB, van der Leij F, Vogel WV, Rutgers EJ, Vrancken Peeters MJ, Elkhuizen PH, et al. Accuracy of ¹⁸F-FDG PET/CT for primary tumor visualization and staging in T1 breast cancer. Acta Oncol. 2014;53(1):50-7.
- 3. Seo MJ, Lee JJ, Kim HO, Chae SY, Park SH, Ryu JS, et al. Detection of internal mammary lymph node metastasis with (18)F-fluorodeoxyglucose positron emission tomography/computed tomography in patients with stage III breast cancer. Eur J Nucl Med Mol Imaging. 2014;41(3):438-45.
- 4. Chandra SP, Bal CS, Jain S, Joshua SP, Gaikwad S, Garg A, et al. Intraoperative coregistration of magnetic resonance imaging, positron emission tomography, and electrocorticographic data for neocortical lesional epilepsies may improve the localization of the epileptogenic focus: a pilot study. World Neurosurg. 2014;82(1-2):110-7.
- 5. Rojas Llimpe FL, Di Fabio F, Ercolani G, Giampalma E, Cappelli A, Serra C, et al. Imaging in resectable colorectal liver metastasis patients with or without preoperative chemotherapy: results of the PROMETEO-01 study. Br J Cancer. 2014;111(4):667-73.
- 6. Abbadi RA, Sadat U, Jah A, Praseedom RK, Jamieson NV, Cheow HK, et al. Improved longterm survival after resection of colorectal liver metastases following staging with FDG positron emission tomography. J Surg Oncol. 2014;110(3):313-9.
- 7. Engelmann BE, Loft A, Kjaer A, Nielsen HJ, Berthelsen AK, Binderup T, et al. Positron emission tomography/computed tomography for optimized colon cancer staging and follow up. Scand J Gastroenterol. 2014;49(2):191-201.
- 8. Ozis SE, Soydal C, Akyol C, Can N, Kucuk ON, Yagci C, et al. The role of ¹⁸F-fluorodeoxyglucose positron emission tomography/computed tomography in the primary staging of rectal cancer. World J Surg Oncol. 2014;12:26.
- 9. Zheng JH, Chang ZH, Han CB, Ma JT, Liu ZY, Lu ZM, et al. Detection of residual tumor following radiofrequency ablation of liver metastases using ¹⁸F-FDG PET/PET-CT: a systematic review and meta-analysis. Nucl Med Commun. 2014;35(4):339-46.
- 10. Park K, Jang G, Baek S, Song H. Usefulness of combined PET/CT to assess regional lymph node involvement in gastric cancer. Tumori. 2014;100(2):201-6.
- 11. Ambrosini V, Zucchini G, Nicolini S, Berselli A, Nanni C, Allegri V, et al. ¹⁸F-FDG PET/CT impact on testicular tumours clinical management.[Erratum appears in Eur J Nucl Med Mol Imaging. 2014 Mar;41(3):585 Note: Domenico, Rubello [corrected to Rubello, Domenico]]. Eur J Nucl Med Mol Imaging. 2014;41(4):668-73.
- 12. Goodfellow H, Viney Z, Hughes P, Rankin S, Rottenberg G, Hughes S, et al. Role of fluorodeoxyglucose positron emission tomography (FDG PET)-computed tomography (CT) in the staging of bladder cancer. BJU Int. 2014;114(3):389-95.
- 13. Chen YM, Chen T, Zee CS, Shi YP, Wan LR, Tong LJ. Is there an impact of ¹⁸F-FDG PET/CT on the surveillance and clinical management of recurrent ovarian cancer? Research based on a large sample in a single PET/CT center. Nucl Med Commun. 2014;35(4):347-52.
- 14. Chu Y, Zheng A, Wang F, Lin W, Yang X, Han L, et al. Diagnostic value of ¹⁸F-FDG-PET or PET-CT in recurrent cervical cancer: a systematic review and meta-analysis. Nucl Med Commun. 2014;35(2):144-50.
- 15. Michielsen K, Vergote I, Op de Beeck K, Amant F, Leunen K, Moerman P, et al. Whole-body MRI with diffusion-weighted sequence for staging of patients with suspected ovarian

cancer: a clinical feasibility study in comparison to CT and FDG-PET/CT. Eur Radiol. 2014;24(4):889-901.

- 16. Gao S, Li S, Yang X, Tang Q. ¹⁸FDG PET-CT for distant metastases in patients with recurrent head and neck cancer after definitive treatment. A meta-analysis. Oral Oncol. 2014;50(3):163-7.
- 17. Kubiessa K, Purz S, Gawlitza M, Kuhn A, Fuchs J, Steinhoff KG, et al. Initial clinical results of simultaneous ¹⁸F-FDG PET/MRI in comparison to ¹⁸F-FDG PET/CT in patients with head and neck cancer. Eur J Nucl Med Mol Imaging. 2014;41(4):639-48.
- 18. Rohde M, Dyrvig AK, Johansen J, Sorensen JA, Gerke O, Nielsen AL, et al. ¹⁸F-fluorodeoxy-glucose-positron emission tomography/computed tomography in diagnosis of head and neck squamous cell carcinoma: a systematic review and meta-analysis. Eur J Cancer. 2014;50(13):2271-9.
- 19. Hamed MAG, Ghany AFA, Osman NM. The diagnostic usefulness of FDG-PET/CT in detecting tumor recurrence not evident in whole body I131 scan in differentiated thyroid carcinoma. Egypt J Radiol Nucl Med. 2014;45(2):361-5.
- 20. Vainshtein JM, Spector ME, Stenmark MH, Bradford CR, Wolf GT, Worden FP, et al. Reliability of post-chemoradiotherapy F-18-FDG PET/CT for prediction of locoregional failure in human papillomavirus-associated oropharyngeal cancer. Oral Oncol. 2014;50(3):234-9.
- 21. Adams HJ, Kwee TC, de Keizer B, Fijnheer R, de Klerk JM, Nievelstein RA. FDG PET/CT for the detection of bone marrow involvement in diffuse large B-cell lymphoma: systematic review and meta-analysis. Eur J Nucl Med Mol Imaging. 2014;41(3):565-74.
- 22. Adams HJ, Kwee TC, Fijnheer R, Dubois SV, Nievelstein RA, de Klerk JM. Bone marrow 18F-fluoro-2-deoxy-D-glucose positron emission tomography/computed tomography cannot replace bone marrow biopsy in diffuse large B-cell lymphoma. Am J Hematol. 2014;89(7):726-31.
- 23. Cortes-Romera M, Sabate-Llobera A, Mercadal-Vilchez S, Climent-Esteller F, Serrano-Maestro A, Gamez-Cenzano C, et al. Bone marrow evaluation in initial staging of lymphoma: ¹⁸F-FDG PET/CT versus bone marrow biopsy. Clin Nucl Med. 2014;39(1):e46-52.
- 24. Girinsky T, Auperin A, Ribrag V, Elleuch M, Ferme C, Bonniaud G, et al. Role of FDG-PET in the implementation of involved-node radiation therapy for Hodgkin lymphoma patients. Int J Radiat Oncol Biol Phys. 2014;89(5):1047-52.
- 25. Picardi M, Pugliese N, Cirillo M, Zeppa P, Cozzolino I, Ciancia G, et al. Advanced-stage Hodgkin lymphoma: US/chest radiography for detection of relapse in patients in first complete remission--a randomized trial of routine surveillance imaging procedures. Radiology. 2014;272(1):262-74.
- 26. Abo-Sheisha DM, Fattah OA. Prognostic evaluation of PET/CT in residual postchemotherapy masses in patients with diffuse large B-cell lymphoma and its impact on survival. Egypt J Radiol Nucl Med. 2014 September;45(3):921-8.
- 27. Cheah CY, Dickinson M, Hofman MS, George A, Ritchie DS, Prince HM, et al. Limited clinical benefit for surveillance PET-CT scanning in patients with histologically transformed lymphoma in complete metabolic remission following primary therapy. Ann Hematol. 2014;93(7):1193-200.
- 28. Terezakis SA, Schoder H, Kowalski A, McCann P, Lim R, Turlakov A, et al. A prospective study of ¹⁸FDG-PET with CT coregistration for radiation treatment planning of lymphomas and other hematologic malignancies. Int J Radiat Oncol Biol Phys. 2014;89(2):376-83.
- 29. Rodriguez Rivera AM, Alabbas H, Ramjaun A, Meguerditchian AN. Value of positron emission tomography scan in stage III cutaneous melanoma: a systematic review and meta-analysis. Surg Oncol. 2014;23(1):11-6.

- 30. Brocken P, van der Heijden HF, Dekhuijzen PN, Peters-Bax L, de Geus-Oei LF. High performance of F-fluorodeoxyglucose positron emission tomography and contrastenhanced CT in a rapid outpatient diagnostic program for patients with suspected lung cancer. Respiration. 2014;87(1):32-7.
- 31. Li S, Zhao B, Wang X, Yu J, Yan S, Lv C, et al. Overestimated value of (18)F-FDG PET/CT to diagnose pulmonary nodules: analysis of 298 patients. Clin Radiol. 2014;69(8):e352-7.
- 32. Treglia G, Sadeghi R, Annunziata S, Lococo F, Cafarotti S, Bertagna F, et al. Diagnostic accuracy of ¹⁸F-FDG-PET and PET/CT in the differential diagnosis between malignant and benign pleural lesions: a systematic review and meta-analysis. Acad Radiol. 2014;21(1):11-20.
- 33. Treglia G, Sadeghi R, Annunziata S, Lococo F, Cafarotti S, Prior JO, et al. Diagnostic performance of fluorine-18-fluorodeoxyglucose positron emission tomography in the assessment of pleural abnormalities in cancer patients: a systematic review and a meta-analysis. Lung Cancer. 2014;83(1):1-7.
- 34. Bugge AS, Naalsund A, Johnsrud K, Berstad AE, Kongerud J, Lund MB. PET-CT in the assessment of lung cancer at Rikshospitalet from 2007-2011. Tidsskr Nor Laegeforen. 2014;134(9):938-44.
- 35. Halac M, Ozhan M, Yilmaz Aksoy S, Vatankulu B, Aliyev A, Asa S, et al. The role of FDG-PET/CT in detecting unsuspected and unknown distant metastasis in the initial staging of NSCLC. Turk J Med Sci. 2014;44(6):1029-40.
- 36. Inal A, Kaplan MA, Kucukoner M, Urakci Z, Dostbil Z, Komek H, et al. Is there any significance of lung cancer histology to compare the diagnostic accuracies of ¹⁸F-FDG-PET/CT and ^{99m}Tc-MDP BS for the detection of bone metastases in advanced NSCLC? Wspolczesna Onkologia. 2014;18(2):106-10.
- 37. Pastis NJ, Jr., Greer TJ, Tanner NT, Wahlquist AE, Gordon LL, Sharma AK, et al. Assessing the usefulness of ¹⁸F-fluorodeoxyglucose PET-CT scan after stereotactic body radiotherapy for early-stage non-small cell lung cancer. Chest. 2014;146(2):406-11.
- Brunocilla E, Ceci F, Schiavina R, Castellucci P, Maffione AM, Cevenini M, et al. Diagnostic accuracy of (11)C-choline PET/CT in preoperative lymph node staging of bladder cancer: a systematic comparison with contrast-enhanced CT and histologic findings. Clin Nucl Med. 2014;39(5):e308-12.
- 39. von Eyben FE, Kairemo K. Meta-analysis of (11)C-choline and (18)F-choline PET/CT for management of patients with prostate cancer. Nucl Med Commun. 2014;35(3):221-30.
- 40. Heck MM, Souvatzoglou M, Retz M, Nawroth R, Kubler H, Maurer T, et al. Prospective comparison of computed tomography, diffusion-weighted magnetic resonance imaging and [11C]choline positron emission tomography/computed tomography for preoperative lymph node staging in prostate cancer patients. Eur J Nucl Med Mol Imaging. 2014;41(4):694-701.
- 41. Passoni NM, Suardi N, Abdollah F, Picchio M, Giovacchini G, Messa C, et al. Utility of [11C]choline PET/CT in guiding lesion-targeted salvage therapies in patients with prostate cancer recurrence localized to a single lymph node at imaging: results from a pathologically validated series. Urol Oncol. 2014;32(1):38.e9-16.
- 42. Naswa N, Sharma P, Gupta SK, Karunanithi S, Reddy RM, Patnecha M, et al. Dual tracer functional imaging of gastroenteropancreatic neuroendocrine tumors using ⁶⁸Ga-DOTA-NOC PET-CT and ¹⁸F-FDG PET-CT: competitive or complimentary? Clin Nucl Med. 2014;39(1):e27-34.
- 43. Sharma P, Arora S, Mukherjee A, Pal S, Sahni P, Garg P, et al. Predictive value of ⁶⁸Ga-DOTANOC PET/CT in patients with suspicion of neuroendocrine tumors: is its routine use justified? Clin Nucl Med. 2014;39(1):37-43.

- 44. Sharma P, Dhull VS, Arora S, Gupta P, Kumar R, Durgapal P, et al. Diagnostic accuracy of (68)Ga-DOTANOC PET/CT imaging in pheochromocytoma. Eur J Nucl Med Mol Imaging. 2014;41(3):494-504.
- 45. Rijkers AP, Valkema R, Duivenvoorden HJ, van Eijck CH. Usefulness of F-18fluorodeoxyglucose positron emission tomography to confirm suspected pancreatic cancer: a meta-analysis. European J Surg Oncol. 2014;40(7):794-804.
- 46. Chang JS, Choi SH, Lee Y, Kim KH, Park JY, Song SY, et al. Clinical usefulness of ¹⁸F-fluorodeoxyglucose-positron emission tomography in patients with locally advanced pancreatic cancer planned to undergo concurrent chemoradiation therapy. Int J Radiat Oncol Biol Phys. 2014;90(1):126-33.
- 47. Bardi E, Csoka M, Garai I, Szegedi I, Muller J, Gyorke T, et al. Value of FDG-PET/CT examinations in different cancers of children, focusing on lymphomas. Pathol Oncol Res. 2014;20(1):139-43.
- 48. Leal AL, Etchebehere M, Santos AO, Kalaf G, Pacheco EB, Amstalden EM, et al. Evaluation of soft-tissue lesions with (18)F-FDG PET/CT: initial results of a prospective trial. Nucl Med Commun. 2014;35(3):252-9.
- 49. Li B, Li Q, Nie W, Liu S. Diagnostic value of whole-body diffusion-weighted magnetic resonance imaging for detection of primary and metastatic malignancies: a meta-analysis. Eur J Radiol. 2014;83(2):338-44.

Citation	Study Type	Population	РЕТ Туре	CI	Reference Standard	Diagnostic Accuracy (PET)	Diagnostic Accuracy (CI)	Change in Patient Management
Breast Cancer						, ,	, ,	3
Cochet et al, 2014 (1)	Prospective	142 patients (biopsy- proven invasive breast cancer and at least T2 tumour)	FDG PET/CT	Physical examination, mammogram and/or US of the breast and liver, chest x- ray and bone scintigraphy (CT of the chest, abdomen, pelvis and/or brain, MRI of the breast and/or brain were also performed in some patients)	Pathology, serial imaging and clinical follow-up	NA	ΝΑ	PET/CT upstaged 21.1% (30/142) of patients, including 12 from stage II/III to stage IV and downstaged 16.2% (23/142) of patients, including 4 from stage IV to stage II/III. Of 32 patients with validation of imaging results, stage migration due to PET/CT was correct in 29 (90.6%). PET/CT changed management and/or intent to treat in 12.7% (18/142) of patients (11—from curative to palliative, 4—from palliative to curative, 1—treatment modality was changed but not the intent to treat, 2—change in radiation treatment volume).
Koolen et al, 2014 (2)	Prospective	62 patients from two distinct, prospective trials (invasive T1 breast cancer)	Whole-body FDG PET/CT	MRI, US, bone scintigraphy, chest radiography	Histopathology , additional imaging	Axillary metastasis Sens: 73% Spec: 100% PPV: 100% NPV: 72% Accuracy: 84% PET/CT depicted the primary tumour in 87% (54/62) of patients (7 of 7 triple negative and HER2+ patients and 40 of 48 ER+/HER2- patients). PET/CT detected 12 distant lesions in 16% (10/62) of	NA	NA

Appendix 1A: Summary of Studies from July to December 2014

Citation	Study Type	Population	PET Type	СІ	Reference Standard	Diagnostic Accuracy (PET)	Diagnostic Accuracy (CI)	Change in Patient Management
						patients (1—lung metastasis, 3—FP, 8—new primary proliferative lesions)		
Seo et al, 2014 (3)	Retrospective	216 patients (clinical stage III breast cancer)	FDG PET/CT	Physical examination, mammography, US, MRI, chest CT	Histopathology	Internal mammary lymph node metastasis PPV: 87.1%	NA	PET/CT scan data changed 9 previously negative readings to positive (3.6%) and 2 previously positive readings to negative (0.8%) for internal mammary lymph node metastasis.
Epilepsy Chandra et al, 2014 (4)	Prospective	37 patients (refractory	FDG PET	MRI	Electrocortico graphy	Localization Sens: 72.6%	Localization Sens: 27.4%	NA
		neocortical epilepsy)				Spec: 69.9% PPV: 51.7%	Spec: 83.2% PPV: 22.2%	
Gastrointestina	l Cancer							
et al, 2014 (5)	riospective	175 resected lesions (colorectal liver metastasis)		i-CEUS	examination	(Per-lesion basis) Sens: 60% Spec: 90% PPV: 98% NPV: 24% Accuracy: 64% Note: Sensitivity (p=0.000) and accuracy (p=0.001) were significantly lower in patients treated with preoperative chemotherapy than those without.	(Per-lesion basis) <i>CT</i> Sens: 82% Spec: 60% PPV: 94% NPV: 31% Accuracy: 80% Note: Sensitivity (p=0.024) and accuracy (p=0.005) were significantly lower in patients treated with preoperative chemotherapy than those without. <i>MRI</i> Sens: 91% Spec: 59% PPV: 95% NPV: 45% Accuracy: 88% <i>CEUS</i> Sens: 81% Spec: 53%	

Citation	Study Type	Population	РЕТ Туре	CI	Reference Standard	Diagnostic Accuracy (PET)	Diagnostic Accuracy (Cl) PPV: 92% NPV: 27% Accuracy: 77% <i>i-CEUS</i> Sens: 96% Spec: 45% PPV: 93% NPV: 60% Accuracy: 90%	Change in Patient Management
Abbadi et al, 2014 (6)	Retrospective	188 patients with colorectal liver metastases undergoing hepatectom y (57 CT, 131 PET/CT)	Whole-body FDG PET/CT	СТ	Histological or cytological confirmation, clinical and radiological follow-up	Patient outcome (PET/CT staged) 3-year survival: 79% 5-year survival: 54% Median survival: 6.4 years	Patient outcome (CT staged) 3-year survival: 59% 5-year survival: 39% Median survival: 3.9 years	PET/CT resulted in management changes in 23% (30/188) of patients who were initially deemed operable by CT.
Engelmann et al, 2014 (7)	Prospective	65 patients (colon cancer)	FDG PET/CT	СТ	Histology, cytology, repeated imaging	T-staging Sens: 50-58% Spec: 86-91% Accuracy: 80-82% N-staging Sens: 33% Spec: 81-90% Accuracy: 60-66% M-staging Sens: 95-100% Spec: 78-87% Accuracy: 85-89%	T-staging Sens: 17-25% Spec: 82-93% Accuracy: 70-77% N-staging Sens: 17-33% Spec: 81% Accuracy: 53-60% M-staging Sens: 84-100% Spec: 35-63% Accuracy: 54-69%	PET/CT correctly rejected lung metastases in 40% (26/65) of patients with falsely suspected lung metastases on CT. Likewise, PET/CT correctly rejected liver metastases in 8% (5/65) of patients with falsely suspected liver metastases on CT.
Ozis et al, 2014 (8)	Prospective	97 patients (primary rectal cancer)	Whole-body FDG PET/CT	CeCT, pelvic MRI and ERUS as deemed necessary	Intraoperative examination, imaging, or histology where possible	ΝΑ	ΝΑ	PET/CT changed the stage of the disease in 14.4% (14/97) of patients (11 upstaged, 3 downstaged). As a result, patient's treatment strategy was changed in 10 and type of operation was changed in 4.
Zheng et al, 2014 (9)	Systematic review	7 studies (155 patients underwent RFA of liver metastases)	FDG PET or FDG PET/CT	Not specified	Histopathology , clinical and imaging follow-up	Residual tumour following RFA Within 2 days Pooled Sens: 79% Pooled Spec: 84% At 1 week Pooled Sens: 48% Pooled Spec: 94% At 3 months	NA	NA

Citation	Study Type	Population	РЕТ Туре	CI	Reference Standard	Diagnostic Accuracy (PET)	Diagnostic Accuracy (CI)	Change in Patient Management
						Pooled Sens: 52% Pooled Spec: 94%		
Park et al, 2014 (10)	Retrospective	74 patients (gastric cancer)	FDG PET/CT	CeCT	Histopathology	Primary tumour Sens: 67% Region lymph node metastasis Sens: 34% Spec: 88% PPV: 78% NPV: 78% Accuracy: 58%	Primary tumour Sens: 55% Region lymph node metastasis Sens: 51% Spec: 79% PPV: 52% NPV: 57% Accuracy: 65%	NA
Genitourinary C	Cancer Retrospective	56 nationts	Whole-body EDG	CeCT	Clinical and	Seminoma	NΛ	On a scan basis PET/CT led
al, 2014 (11)		121 scans (testicular tumour)	PET/CT		imaging follow-up	Sens: 92% Spec: 84% Nonseminoma Sens: 77% Spec: 95%		to a change in clinical management in 87% (106/121) of cases (47 of 51 seminomas [6-chemotherapy started/continued, 3-radiotherapy started/continued, 2-surgery of secondary lesions, 36-clinical surveillance]; 59 of 70 nonseminomas [18-therapy/surgery started/continued, 41-clinical surveillance).
Goodfellow, et al, 2014 (12)	Retrospective	207 patients (MIBC or high-risk non-MIBC being considered for radical cystectomy)	FDG PET/CT	СТ	Histopathology , biopsy, follow-up imaging	Distant metastases Sens: 54% Spec: 97% PPV: 88% NPV: 85% Accuracy: 86% Pelvic lymph node involvement Sens: 46% Spec: 97% PPV: 87% NPV: 81% Accuracy: 82%	Distant metastases Sens: 41% Spec: 98% PPV: 88% NPV: 82% Accuracy: 83% Pelvic lymph node involvement Sens: 46% Spec: 98% PPV: 93% NPV: 81% Accuracy: 83%	ΝΑ
Gynecologic Car	Retrospective	152 patients	Whole-body EDC	Polyic US CT	Pathology	Recurrent	NA	Among 34 patients with
2014 (13)	in the spectre	(ovarian cancer)	PET/CT	MRI, bone scanning	physical examination, clinical and	disease Sens: 98.3% Spec: 91.2%		increasing CA-125 levels and negative or indeterminate conventional

Citation	Study Type	Population	PET Type	CI	Reference Standard imaging follow-up	Diagnostic Accuracy (PET) PPV: 97.5% NPV: 93.9% Accuracy: 96.8%	Diagnostic Accuracy (CI)	Change in Patient Management imaging findings, PET/CT detected peritoneal metastasis in 5. Among 23 patients suspected of recurrence, 6 patients avoided unnecessary surgical exploration and further examination after PET/CT results. Among 36 patients who underwent PET/CT to assess the extent of disease, PET/CT detected additional metastatic lesions and changed the management from surgery or radiotherapy to comprehensive treatment with combined chemotherapy. Among 12 patients who underwent PET/CT for evaluation of therapeutic response, 8 had terminated their primary therapy or changed to other chemotherapeutic schemes because PET/CT indicated progressive disease.
Michielsen et al, 2014 (14)	Prospective	32 patients (suspected ovarian cancer)	FDG PET/CT	Clinical and CA-125 assessment, gynecological US, thoraco- abdominal CT, diagnostic open laparoscopy, WB-DWI/MRI	Histopathology , PET/CT	Primary lesions Sens: 100% Spec: 33% PPV: 94% NPV: 100% Accuracy: 94% Peritoneal staging Sens: 52% Spec: 85% PPV: 73% NPV: 70% Accuracy: 71% Bowel serosal and mesenterial metastases Sens: 24% Spec: 93% PPV: 67% NPV: 69%	Primary lesions <i>WB-DWI/MRI</i> Sens: 100% Spec: 50% PPV: 93% NPV: 100% Accuracy: 94% <i>CT</i> Sens: 96% Spec: 25% PPV: 90% NPV: 50% Accuracy: 88% Peritoneal staging <i>WB-DWI/MRI</i> Sens: 91% Spec: 91% PPV: 89% NPV: 93%	ΝΑ

	Study Type	Ρομιατιοπ	РЕТТуре		Standard	Accuracy (PET) Accuracy: 69% Retroperitoneal lymphadenopath ies Sens: 77% Spec: 91% PPV: 77% NPV: 91% Accuracy: 87% Hepatic-hilar lymphadenopath ies Sens: 13% Spec: 100% PPV: 100% NPV: 90% Accuracy: 91%	Accuracy (CI) Accuracy: 91% CT Sens: 65% Spec: 82% PPV: 74% NPV: 75% Accuracy: 75% Bowel serosal and mesenterial metastases WB-DWI/MRI Sens: 83% Spec: 80% PPV: 69% NPV: 89% Accuracy: 81% CT Sens: 49% Spec: 91% PPV: 74% NPV: 76% Accuracy: 76% Retroperitoneal lymphadenopath ies WB-DWI/MRI Sens: 77% Spec: 91% PPV: 77% NPV: 91% Accuracy: 87% CT Sens: 54% Spec: 78% PPV: 50% NPV: 81% Accuracy: 71% Hepatic-hilar lymphadenopath ies WB-DWI/MRI Sens: 54% Spec: 77% NPV: 91% Accuracy: 71% Hepatic-hilar lymphadenopath ies WB-DWI/MRI Sens: 63% Spec: 97% PPV: 71% NPV: 96% Accuracy: 93% CT Sens: 13%	Management
--	------------	-----------	---------	--	----------	---	--	------------

Citation	Study Type	Population	РЕТ Туре	CI	Reference Standard	Diagnostic Accuracy (PET)	Diagnostic Accuracy (Cl) Spec: 97% PPV: 33% NPV: 90% Accuracy: 88%	Change in Patient Management
Chu et al, 2014 (15)	Systematic review	20 studies (patients with cervical cancer)	FDG PET or FDG PET/CT	Not specified	Histopathology , clinical and imaging follow-up	Distant metastasis Pooled Sens: 87% Pooled Spec: 97% Local regional recurrence Pooled Sens: 82% Pooled Spec: 98%	NA	NA
Head and Neck	Moto analysis	10 studios		Not specified	Histopathology	Distant	NIA	NIA
Gao et al, 2014 (16)	Meta-analysis	(756 patients with suspected recurrent head and neck cancer after definitive treatment)	FDG PET/CT	Νοτ specified	ristopathology , clinical and imaging follow-up	metastases Pooled Sens: 92% Pooled Spec: 95% Pooled +LR: 16.7 Pooled -LR: 0.09 Pooled DOR: 195	NA	NA
Kubiessa et al, 2014 (17)	Prospective	17 patients (suspected or known cancer of the head and neck region)	FDG PET/CT	CT, MRI	Consensus from multidisciplina ry team, histopathology and imaging follow-up where available	Malignant lesions Sens: 78.3-87% Spec: 85.5-89.1% PPV: 71.4-75% NPV: 90.7-94%	Malignant lesions CT Sens: 82.6-91.3% Spec: 70.9-87.3% PPV: 56.8-73.1% NPV: 92.3-95.1% MRI Sens: 73.9% Spec: 85.5-96.4% PPV: 68-89.5% NPV: 88.7-89.8%	NA
Rohde et al, 2014 (18)	Systematic review and meta-analysis	9 studies (987 patients head and neck squamous cell carcinoma)	FDG PET/CT	MRI, CT	Biopsy	Diagnosis Pooled Sens: 89.3% Pooled Spec: 89.5%	Diagnosis Pooled Sens: 71.6% Pooled Spec: 78%	NA
Hamed et al, 2014 (19)	Prospective	12 patients (histological ly proven differentiat ed thyroid	Whole-body FDG PET/CT	Whole-body I ¹³¹ scan	Other radiological (US, CT, MRI) and/or cytological	NA	NA	PET/CT revealed the precise anatomical localization of recurrent lesions in 41.6% (5/12) of patients with negative

		Standard	Accuracy (PET)	Accuracy (CI)	Management
carcinoma)		(FNAC) investigation			whole body I's scan.
Vainshtein et al, 2014 (20) Retrospective 101 patients (stage III-V HPV- associated oropharyng eal cancer who completed definitive chemoradio therapy)	CT	Histology	Post-treatment assessment at 3 months Primary tumour response Sens: 33% Spec: 68-91% PPV: 3-10% NPV: 97-98% Accuracy: 67-89% Neck response Sens: 0-63% Spec: 70-92% PPV: 0-16% NPV: 91-95% Accuracy: 69-85% Post-treatment assessment after 3 months Local recurrence Sens: 50% Spec: 97% PPV: 33% NPV: 98% Accuracy: 96% Regional recurrence Sens: 83% Spec: 98% PPV: 83% NPV: 98% Accuracy: 97%	Post-treatment assessment at 3 months Neck response Sens: 62% Spec: 55% PPV: 12% NPV: 94% Accuracy: 52%	NA
Hematology Adams et al Systematic 7 studies EDG PET/CT	BMB	BMB imaging	Bone marrow	NΔ	In one study PET/CT
2014 (21) review (654 patients with newly diagnosed DLBCL)	Dinu	follow-up	involvement Pooled Sens: 88.7% Pooled Spec: 99.8%		upstaged 6.9% (9/130) of patients when BMB was negative. In another study, 8.3% (11/133) of patients were upstaged to stage IV due to positive PET/CT while BMB was negative (4 of these patients benefited from a change in
					consolidation treatment)

Citation	Study Type	Population	РЕТ Туре	CI	Reference Standard	Diagnostic Accuracy (PET)	Diagnostic Accuracy (CI)	Change in Patient Management
		diagnosed DLBCL)				Sens: 68.8% (PET/CT detected bone marrow involvement in 43.6% [34/78] patients, of whom 11 of 16 BMB-positive patients were also PET/CT positive)	involvement in 20.5% (16/78) of patients.	significant predictor of PFS (p=0.016) and OS (p=0.004).
Cortes-Romera et al, 2014 (23)	Prospective	147 patients (84 DLBCL, 63 HL)	Whole-body FDG PET/CT	ВМВ	ВМВ	Bone marrow involvement Sens: 95% Spec: 86% PPV: 54% NPV: 99% Accuracy: 87%	NA	PET/CT upstaged 28% (5/18) of patients with a negative BMB result (2-therapeutic modification).
Girinsky et al, 2014 (24)	Prospective (patients enrolled in the randomized EORTC/LYSA/ FIL Intergroup H10 trial)	135 patients (clinical stages //II supradiaphr agmatic HL)	FDG PET/CT	СТ	Multidisciplina ry team (radiation oncologist, nuclear medicine physician, radiologist)	ΝΑ	ΝΑ	In comparison to INRT delineation with CT alone, PET/CT led to an increase in pre-chemotherapy GTV in 64.9% (87/134) of patients (mean volume increase of 8.8%) and a decrease in GTV in 20.9% (28/134) of patients. Likewise, PET/CT increased the post- chemotherapy CTV in 60% (69/115) of patients (mean volume increase of 7.1%) and a decrease in CTV in 6.1% (7/115) of patients.
Picardi et al, 2014 (25)	RCT	300 patients; 1:1 allocation (advanced- stage HL who had responded completely to first-line treatment)	Whole-body FDG PET/CT	US/chest radiography	Histology	Relapse Sens: 100% Spec: 86.3% PPV: 72.7% NPV: 100% +LR: 7.3 -LR: 0	Relapse Sens: 97.5% Spec: 96.3% PPV: 90.7% NPV: 99.1% +LR: 26.8 -LR: 0.02	Compared with US/chest radiography, PET/CT led to significantly more unnecessary major surgical biopsies, higher ionizing radiation exposure, and higher estimated cost per relapse.
Abo-Sheisha & Fattah, 2014 (26)	Retrospective	62 patients (DLBCL who had CT	FDG PET/CT	СТ	Clinical and imaging follow-up	Prediction of relapse Sens: 100%	NA	NA

Citation	Study Type	Population	РЕТ Туре	CI	Reference Standard	Diagnostic Accuracy (PET)	Diagnostic Accuracy (CI)	Change in Patient Management
		document residual masses)				Spec: 91.7% PPV: 77.8% NPV: 100% Accuracy: 93.5%		
Cheah et al, 2014 (27)	Retrospective	55 patients (transforme d indolent lymphoma who achieved complete metabolic remission after primary therapy)	FDG PET/CT	Not specified	Biopsy, clinical follow- up	Relapse Sens: 83% Spec: 94% PPV: 63% NPV: 98%	NA	ΝΑ
Terezakis et al, 2014 (28)	Prospective	95 patients (70 NHL, 10 HL, 12 plasma cell neoplasm, 3 other)	FDG PET/CT	СТ	Multidisciplina ry review of imaging	ΝΑ	NA	Relative to CT-based treatment planning, PET/CT increased GTV in 38 patients (median volume increase=27%) and decreased GTV in 41 patients (median volume decrease=39.5%) as defined by radiation oncologists. When defined by nuclear medicine physicians, PET/CT increased GTV in 27 patients (median volume increase=26.5%) and decreased GTV in 52 patients (median volume decrease=70%).
Melanoma Rodriguez Rivera et al,	Systematic review	9 studies (623	FDG PET or FDG PET/CT	Not specified	Biopsy, clinical follow-	Systemic metastases Peoled Sens:	NA	PET/CT led to a change in stage and/or management
2014 (29)		with stage III cutaneous melanoma)			imaging	Pooled Sens: 89.4% Pooled Spec: 88.8% Pooled +LR: 7.97 Pooled -LR: 0.12 Pooled DOR: 66.8		patients.
Lung Cancer (of NSCLC)	ther than							
Brocken et al, 2014 (30)	Retrospective	386 patients (radiologica l suspicion	Whole-body FDG PET/CT	Chest x-ray, CT angiography, high-resolution	Pathology, follow-up	Malignancy Sens: 97.7% Spec: 60.2%	NA	ΝΑ

Citation	Study Type	Population of lung cancer	РЕТ Туре	CI CT, FDG PET, bronchoscopy	Reference Standard	Diagnostic Accuracy (PET) PPV: 84.0% NPV: 92.5% Accuracy: 85.8%	Diagnostic Accuracy (CI)	Change in Patient Management
Li et al, 2014 (31)	Retrospective	298 patients (clinically suspected pulmonary malignancy)	FDG PET/CT	Not specified	Histopathology	Malignant lesions Sens: 80.2% Spec: 38% PPV: 86.5% NPV: 27.9% Accuracy: 73.1%	NA	NA
Treglia et al, 2014 (32)	Meta-analysis	11 studies (212 patients with suspicious malignant pleural mesothelio ma or undergoing evaluation for pleural lesions)	FDG PET or FDG PET/CT	СТ	Histopathology , biopsy, cytology, clinical and radiological follow-up	Differential diagnosis between malignant and benign pleural lesions Pooled Sens: 95% Pooled Spec: 82% Pooled Spec: 82% Pooled PPV: 90% Pooled NPV: 91% Pooled Accuracy: 90% Pooled +LR: 5.3 Pooled -LR: 0.09 Pooled DOR: 74	NA	ΝΑ
Treglia et al, 2014 (33)	Meta-analysis	5 studies (208 patients, lung cancer and pleural effusion)	FDG PET/CT	СТ	Histopathology , cytology, biopsy, thoracentesis, follow-up	Differential diagnosis between malignant and benign pleural abnormalities Pooled Sens: 81% Pooled Spec: 83% Pooled Spec: 83% Pooled PPV: 86% Pooled NPV: 77% Pooled Accuracy: 82% Pooled +LR: 3.95 Pooled -LR: 0.24 Pooled DOR: 19.84	ΝΑ	NA
NSCLC Bugge et al, 2014 (34)	Retrospective	533 patients (potentially operable NSCLC)	FDG PET/CT	Bronchoscopy, diagnostic CT of the thorax and upper abdomen	Histology, cytology, biopsy, MRI	Malignant lymph nodes in the mediastinum Sens: 78% Spec: 88% PPV: 64% NPV: 94%	NA	NA

Citation	Study Type	Population	РЕТ Туре	CI	Reference Standard	Diagnostic Accuracy (PET) Accuracy: 86%	Diagnostic Accuracy (Cl)	Change in Patient Management
Halac et al, 2014 (35)	Retrospective	567 patients (newly diagnosed NSCLC)	FDG PET/CT	Thorax CT	Histopathology , clinical and radiological follow-up	PET/CT detected distant unexpected metastases on thorax CT in 28.8% (163/567) of patients (34 TP; 5 FP-with solitary pulmonary lesions, 129 TP; 17 FP-initial staging).	NA	NA
Inal et al, 2014 (36)	Retrospective	53 patients (advanced NSCLC)	FDG PET/CT	^{99m} Tc-MDP bone scintigraphy	X-ray, MRI, follow-up screening	Bone metastases Sens: 90.4% Spec: 99.4% PPV: 98.1% NPV: 96.6% Accuracy: 97.0%	Bone metastases Sens: 84.6% Spec: 93.1% PPV: 82.5% NPV: 93.2% Accuracy: 90.8%	NA
Pastis Jr et al, 2014 (37)	Retrospective	88 patients (stage I or II NSCLC who underwent SBRT)	Whole-body FDG PET/CT	СТ	Biopsy, radiographic follow-up	Recurrence or treatment failure 3-month post- treatment assessment Sens: 50% Spec: 94% PPV: 67% NPV: 89%	NA	ΝΑ
Non-FDG tracer	s							
Brunocilla et al, 2014 (38)	Prospective	26 patients (histological ly proven transitional cell carcinoma of the bladder)	¹¹ C-choline PET/CT	CeCT	Histopathology	Lymph node metastases Per-patient basis Sens: 42.0% Spec: 84.0% PPV: 50.0% NPV: 85.0% Accuracy: 73.0% Per-region basis Sens: 11.8% Spec: 82.6% PPV: 33.3% NPV: 55.9% Accuracy: 52.5% Per-lymph node	Lymph node metastases <i>Per-patient</i> <i>basis</i> Sens: 14.3% Spec: 89.5% PPV: 30.0% NPV: 78.0% Accuracy: 6.09% <i>Per-region basis</i> Sens: 5.9% Spec: 80.0% PPV: 16.7% NPV: 55.6% Accuracy: 50.0% <i>Per-lymph node</i>	NA

Citation	Study Type	Population	РЕТ Туре	CI	Reference Standard	Diagnostic Accuracy (PET) basis Sens: 10.5% Spec: 64.0% PPV: 30.7% NPV: 32.0% Accuracy: 31.7%	Diagnostic Accuracy (CI) basis Sens: 2.0% Spec: 63.0% PPV: 9.1% NPV: – Accuracy: 27.7%	Change in Patient Management
von Eyben & Kairemo, 2014 (39)	Meta-analysis	47 articles (3167 patients with prostate cancer who were examined for staging or restaging of biochemical recurrence)	¹¹ C/ ¹⁸ F-choline PET/CT	Bone scanning, FDG PET/CT	Histology, CI, follow-up	Pelvic lymph node metastases Pooled Sens: 59% Pooled Spec: 92% Pooled PPV: 70% Pooled NPV: 85% Pooled +LR: 6.86 Pooled -LR: 0.45 Pooled DOR: 19.17	NA	PET/CT led to a treatment change (palliative to curative or curative to palliative) in 41% (381/938) of patients. The changes yielded complete PSA response in 25% (101/404) of patients.
Heck et al, 2014 (40)	Prospective	33 patients (intermedia te- and high-risk prostate cancer undergoing radical prostatecto my and extended pelvic lymph node dissection)	¹¹ C-choline PET/CT	CT, DWI/MRI	Histopathology	Lymph node metastases <i>Per-patient</i> <i>basis</i> Sens: 57.1% Spec: 89.5% PPV: 80.0% NPV: 73.9% Accuracy: 75.8% <i>Per-field basis</i> Sens: 61.8% Spec: 96.0% PPV: 70.0% NPV: 94.4% Accuracy: 91.6%	Lymph node metastases CT Per-patient basis Sens: 57.1% Spec: 68.4% PPV: 57.1% NPV: 68.4% Accuracy: 63.6% Per-field basis Sens: 47.1% Spec: 94.3% PPV: 55.2% NPV: 92.2% Accuracy: 88.1% DWI/MRI Per-patient basis Sens: 57.1% Spec: 78.9% PPV: 66.7% NPV: 71.4% Accuracy: 69.7% Per-field basis Sens: 55.9% Spec: 96.5% PPV: 70.4% NPV: 93.6%	NA

Citation	Study Type	Population	РЕТ Туре	CI	Reference Standard	Diagnostic Accuracy (PET)	Diagnostic Accuracy (CI)	Change in Patient Management
Passoni et al, 2014 (41)	Prospective	46 patients (biochemica l recurrence after radical prostatecto my who underwent pelvic or pelvic and retroperiton eal lymph node dissection)	¹¹ C-choline PET/CT	Digital rectal examination, abdominopelvic CT, bone scan, prostatic fossa biopsies	Pathology	Single node recurrence Per-site basis PPV: 34.8% Per-lymph node basis PPV: 23.9%	Accuracy: 91.9%	NA
Aaswa et al, 2014 (42)	Retrospective	51 patients (histological ly proven GEP-NETs	⁶⁸ Ga-DOTA-NOC PET/CT	FDG PET/CT	Histopathology , morphologic imaging, follow-up imaging with biochemical markers	Primary and metastatic lesions Per-patient basis Sens: 91.4% Spec: 50% PPV: 95.5% NPV: 33.3% Accuracy: 88.2% Per-lesion basis Primary tumour Sens: 94.2% Spec: 87.5% Accuracy: 92.1% Lymph node Sens: 92.8% Spec: 100% Accuracy: 98% Liver Sens: 80.6% Spec: 100% Accuracy: 88.2% Bone Sens: 75% Spec: 100% Accuracy: 98%	Primary and metastatic lesions Per-patient basis Sens: 42.5% Spec: 100% PPV: 100% NPV: 12.9% Accuracy: 47% Per-lesion basis Primary tumour Sens: 25.7% Spec: 100% Accuracy: 49% Lymph node Sens: 28.5% Spec: 100% Accuracy: 80% Liver Sens: 54.8% Spec: 100% Accuracy: 88.2% Bone Sens: 75% Spec: 100% Accuracy: 98%	NA
Sharma et al, 2014 (43)	Retrospective	164 patients (suspected NET based on clinical features,	[®] Ga-DOTA-NOC PET/CT	CT, MRI, US, endoscopic US, ¹³¹ I-MIBG scintigraphy, FDG PET/CT	Histopathology , clinical, biochemical and imaging follow-up	Diagnosis Sens: 94.8% Spec: 86.5% PPV: 91% NPV: 92%	ΝΑ	NA

Citation	Study Type	Population	PET Type	CI	Reference Standard	Diagnostic Accuracy (PET)	Diagnostic Accuracy (CI)	Change in Patient Management
		raised biochemical markers, and/or imaging findings)				Accuracy: 91.4%		
Sharma et al, 2014 (44)	Retrospective	62 patients (clinical and/or biochemical suspicion of pheochromo cytoma and suspicious adrenal lesion on CT)	⁶⁸ Ga-DOTA-NOC PET/CT	¹³¹ I-MIBG scintigraphy	Histopathology , clinical, biochemical and imaging follow-up	Diagnosis Per-patient basis Sens: 90.4% Spec: 85% PPV: 92.7% NPV: 81% Accuracy: 88.7% Per-lesion basis Sens: 93.5% Spec: 85.7% PPV: 93.5% NPV: 85.7% Accuracy: 91.1%	Diagnosis <i>Per-lesion basis</i> Sens: 61.2% Spec: 78.5% PPV: 86.3% NPV: 47.8% Accuracy: 66.6%	NA
Pancreatic Can Rijkers et al, 2014 (45)	cer Meta-analysis	10 studies (suspected pancreatic cancer)	FDG PET/CT	Not specified	Histopathology , follow-up	Diagnosis Pooled Sens: 90% Pooled Spec: 76% Pooled PPV: 89% Pooled NPV: 78% Pooled Accuracy: 86% Differentiate between pancreatic cancer and chronic pancreatitis Pooled Sens: 96% Pooled Sens: 96% Pooled Spec: 17% Pooled PPV: 83% Pooled NPV: 50% Pooled Accuracy: 81%	ΝΑ	ΝΑ
Chang et al, 2014 (46)	Retrospective	388 patients (locally advanced pancreatic cancer)	FDG PET/CT	СТ	Biopsy where available	NA	NA	PET/CT imaging led to the detection of unsuspected distant metastasis in 33% (128/388) of patients with M ₀ on conventional CT; these patients received systemic therapy immediately. The remaining

Citation	Study Type	Population	РЕТ Туре	CI	Reference Standard	Diagnostic Accuracy (PET)	Diagnostic Accuracy (CI)	Change in Patient Management
								260 patients underwent chemoradiation therapy and PET/CT detected additional lymph node diseases in 17.
Pediatric Cance Bardi et al, 2014 (47)	Retrospective	86 patients (31 HL, 30 NHL, 25 other high- grade solid tumours)	FDG PET/CT	Not specified	Histopathology , repeated imaging and serial clinical follow-up	Staging or post- treatment evaluation HL PPV: 65% NPV: 100% NHL PPV: 61% NPV: 100% Other high- grade solid tumours PPV: 81% NPV: 100%	NA	NA
Sarcoma Leal et al, 2014 (48)	Prospective	44 patients (suspected soft-tissue lesions)	FDG PET/CT	MRI	Histopathology	Differentiating benign from malignant lesions (SUV _{max} of 3.0) Sens: 100% Spec: 83.3% PPV: 78.3% NPV: 100% Accuracy: 89.6%	NA	NA
Various Sites Li et al, 2014 (49)	Meta-analysis	13 studies (1067 patients with various primary lesion)	Whole-body FDG PET/CT	WB-DWI/MRI	Histopathology , clinical and imaging follow-up	Primary and metastatic malignancies Pooled Sens: 89.5% Pooled Spec: 97.5% Pooled +LR: 26.9 Pooled +LR: 0.07 Pooled DOR: 448.2	Primary and metastatic malignancies Pooled Sens: 89.7% Pooled Spec: 95.4% Pooled +LR: 11.9 Pooled +LR: 0.12 Pooled DOR: 120.8	NA

Abbreviations: ^{99m}Tc-MDP: 99mTc-methylene diphosphonate; BMB: bone marrow biopsy; CA-125: cancer antigen 125; CeCT: contrast-enhanced computed tomography; CTV: clinical target volume; CEUS: contrast-enhanced ultrasound; CI: conventional intervention; CT: computed tomography; DOR: diagnostic odds ratio; DLBCL: diffuse large B-cell lymphoma; ERUS: endorectal ultrasound; ER: estrogen receptor; FDG PET/CT: fluorodeoxyglucose positron emission tomography/computed tomography; FP: false positive; FNAC: fine needle aspiration cytology; GEP: gastroenteropancreatic; GTV: gross tumour volume; HL: Hodgkin lymphoma; HER2: human epidermal growth factor receptor 2; HPV: human papillomavirus; i-CEUS: intraoperative CEUS; INRT: involved-field radiation therapy; I¹³¹: iodine-131; MIBC: muscle-invasive bladder cancer; MRI: magnetic resonance imaging; NA:

not available; NET: neuroendocrine tumor; NHL: non-Hodgkin lymphoma; NPV: negative predictive value; NSCLC: non-small cell lung carcinoma; -LR: negative likelihood ratio; +LR: positive likelihood ratio; PPV: positive predictive value; RCT: randomized controlled trial; RFA: radiofrequency ablation; Sens: sensitivity; Spec: specificity; SBRT: stereotactic body radiation therapy; SUV_{max}: maximum standardized uptake value; TP: true positive; US: ultrasound; WB-DWI: whole-body diffusion-weighted imaging