

Guideline 27-2 Version 2

A Quality Initiative of the Program in Evidence-Based Care (PEBC), Ontario Health (Cancer Care Ontario)

Multiparametric Magnetic Resonance Imaging in the Diagnosis of Clinically Significant Prostate Cancer

M.A. Haider, J. Brown, J. Chin, A. Loblaw, N. Perlis, N. Schieda, and the MPMRI in the Diagnosis of Clinically Significant Prostate Cancer Guideline Development Group

Report Date: February 11, 2021

An assessment conducted in January 2023 deferred the review of Guideline 27-2 Version 2. This means that the document remains current until it is assessed again next year. The PEBC has a formal and standardized process to ensure the currency of each document. (PEBC Assessment & Review Protocol)

Guideline 27-2 Version 2 is comprised of 5 sections. You can access the summary and full report here:

https://www.cancercareontario.ca/en/guidelines-advice/types-of-cancer/281

Section 1: Recommendations Section 2: Guideline - Recommendations and Key Evidence Section 3: Guideline Methods Overview Section 4: Systematic Review Section 5: Internal and External Review

For information about this document, please contact Masoom Haider through the PEBC via: Phone: 905-527-4322 ext. 42822 Fax: 905 526-6775 E-mail: <u>ccopgi@mcmaster.ca</u> For information about the PEBC and the most current version of all reports, please visit the OH (CCO) website at http: <u>https://www.cancercareontario.ca/en/guidelines-advice</u> or contact the PEBC office at: Phone: 905-527-4322 ext. 42822 Fax: 905 526-6775 E-mail: <u>ccopgi@mcmaster.ca</u> **PEBC Report Citation (Vancouver Style):** Haider MA, Brown J, Chin J, Loblaw A, Perlis N, Schieda N. Multiparametric Magnetic Resonance Imaging in the Diagnosis of Clinically Significant Prostate Cancer. Toronto (ON): Ontario Health (Cancer Care Ontario); 2021 *February 11*. Program in Evidence-Based Care Guideline No.: 27-2 Version 2, available on the OH (CCO) website.

Journal Citation (Vancouver Style): Haider MA, Brown J, Yao X, Chin J, Perlis N, Schieda N, Loblaw A. Multiparametric Magnetic Resonance Imaging in the Diagnosis of Clinically Significant Prostate Cancer: an Updated Systematic Review. Clin Oncol. 2021;33(12):e599-e612.

Journal Citation (Vancouver Style): Haider MA, Brown J, Chin J, Perlis N, Schieda N, Loblaw A. Evidence-based guideline recommendations on multiparametric magnetic resonance imaging in the diagnosis of clinically significant prostate cancer: A Cancer Care Ontario updated clinical practice guideline. CUAJ 2022;16(2): 16-23.

Copyright

This report is copyrighted by Ontario Health (Cancer Care Ontario); the report and the illustrations herein may not be reproduced without the express written permission of Ontario Health (Cancer Care Ontario). Ontario Health (Cancer Care Ontario) reserves the right at any time, and at its sole discretion, to change or revoke this authorization.

Disclaimer

Care has been taken in the preparation of the information contained in this report. Nevertheless, any person seeking to consult the report or apply its recommendations is expected to use independent medical judgment in the context of individual clinical circumstances or to seek out the supervision of a qualified clinician. Ontario Health (Cancer Care Ontario) makes no representations or guarantees of any kind whatsoever regarding the report content or its use or application and disclaims any responsibility for its use or application in any way.

Table of Contents

Section 1: Recommendations	1
Section 2: Guideline - Recommendations and Key Evidence	4
Section 3: Guideline Methods Overview	10
Section 4: Systematic Review	13
Section 5: Internal and External Review	55
References	65
Appendix 1: Definitions and Abbreviations	71
Appendix 2: Affiliations and Conflict of Interest Declarations	72
Appendix 3: Literature Search Strategy	74
Appendix 4: PRISMA Flow Diagram	76
Appendix 5: Risk of Bias Assessments	77
Appendix 6: Adverse Events	81
Appendix 7: Supplementary Data (pre-2015 added)	83
Appendix 8: Subgroup Analysis (by type of Targeted Biopsy)	87

Multiparametric Magnetic Resonance Imaging in the Diagnosis of Clinically Significant Prostate Cancer

Section 1: Recommendations

This section is a quick reference guide and provides the guideline recommendations only. For key evidence associated with each recommendation, see <u>Section 2</u>. See <u>Appendix 1</u> for a list of definitions and abbreviations.

Strength	Definition	Verb wording
Recommendation to	The guideline Working Group* believes the	Ве
use the diagnostic tool	benefits of the diagnostic tool in the target	recommended
	patients clearly outweigh the harms for nearly	to go for;
	all patients and the group is confident to	Should be done
	support the recommended action.	D
Weak recommendation	The guideline Working Group* believes the	Be suggested to
to use the diagnostic	benefits and harms of the diagnostic tool in	go for;
tool	the target patients are closely balanced or are	May/can be
	more uncertain but still adequate to support	done;
	the recommended action.	Consider doing
No recommendation	The guideline Working Croupt is uncortain	 Thora is no
for the diagnostic tool	whether the bonefits and barms of the	recommondation
	diagnostic tool in the target patients are	for or against
	balanced and does not recommend a specific	TOT OF against
	action	
Weak recommendation	The guideline Working Group* believes the	Be suggested
NOT to use the	benefits and harms of the diagnostic tool in	against;
diagnostic tool	the target patients are closely balanced or are	May/cannot be
	more uncertain but still adequate to support	done;
	the recommended action.	Do not consider
		doing
Recommendation NOT	The guideline Working Group* believes the	Ве
to use the diagnostic	harms of the diagnostic tool in the target	recommended
tool	patients clearly outweigh the benefits for	to against;
	nearly all patients and the group is confident	Should not be
	to support the recommended action.	done
	The factors considered in the above	
	judgments include desirable and undesirable	
	effects of the diagnostic tool, the certainty	
	or evidence, patient preference, nealth	
	equity, acceptability, leasibility, and	
	generalizability in Untario.	

Strength of Recommendations for This Guideline

*The guideline Working Group includes two radiologists, one radiation oncologist, two urologists and one guideline methodologist.

GUIDELINE OBJECTIVES

To make recommendations with respect to:

- a) The use of multiparametric magnetic resonance imaging (MPMRI) in patients with an elevated risk of clinically significant prostate cancer (CSPCa) who are biopsy naïve,
 b) The use of MPMRI-targeted biopsy plus transrectal ultrasound systematic biopsy (TRUS-SB) or MPMRI-TB alone for biopsy-naïve patients who have undergone MPMRI;
- a) The use of MPMRI in patients with an elevated risk of CSPCa who have had a prior negative TRUS-SB for any prostate cancer,
 b) The use of MPMRI-TB plus TRUS-SB or MPMRI-TB alone for patients who have had a prior negative TRUS-SB defined as no prostate cancer on biopsy of any grade group;
- 3. The minimum acceptable standards in the acquisition, interpretation and reporting of MPMRI and the minimal acceptable standards for performance of MPMRI-TB.

TARGET POPULATION

Patients with an elevated risk of CSPCa (defined as International Society of Urologic Pathology [ISUP] Grade Group [GG] \geq 2), as estimated by available clinical information and tools such as risk calculators and nomograms, of who are A) biopsy naïve or B) have had a prior negative TRUS-SB defined as no prostate cancer on biopsy of any grade group.

INTENDED USERS

Radiologists, oncologists, urologists, and other clinicians who provide care for patients defined by the target population.

RECOMMENDATIONS

Recommendation 1 (Recommendation to use the diagnostic tool)

For biopsy-naïve patients at elevated risk of CSPCa:

- MPMRI is recommended prior to biopsy in patients who are candidates for curative management with suspected clinically localized prostate cancer.
 - <u>If the MPMRI is positive</u>, MPMRI-TB and TRUS-SB should be performed together to maximize detection of CSPCa.
 - <u>If the MPMRI is negative</u>, consider forgoing any biopsy after discussion of the risks and benefits with the patient as part of shared decision making and ongoing follow-up.

Qualifying Statements for Recommendation 1

- Between 8% and 24% of patients with CSPCa may be missed by a negative MPMRI. For this reason, patients should be made aware of the risks and benefits of biopsy avoidance when MPMRI is negative.
- MPMRI should only be performed if there is availability of high-quality MPMRI interpretation and operators with experience performing targeted biopsies (see Recommendation 3).
- Due to the limited availability, MPMRI is recommended only for patients where there is intent of curative management should the biopsy be positive for CSPCa.

Recommendation 2 (Recommendation to use the diagnostic tool)

In patients who had a prior negative TRUS-SB and demonstrate a high risk of having CSPCa in whom curative management is being considered:

• MPMRI should be performed,

- <u>If the MPMRI is positive</u>, targeted biopsy should be performed. Concomitant TRUS-SB can be considered depending on the patients risk profile and time since prior TRUS-SB biopsy,
- If the MPMRI is negative, consider forgoing a TRUS-SB only after discussion of the risks and benefits with the patient as part of shared decision making and ongoing follow-up.

Qualifying Statements for Recommendation 2

- Prior negative TRUS-SB is defined as no cancer of any grade group on prior biopsy.
- MPMRI should only be performed if there is availability of high-quality MPMRI interpretation and operators with experience performing targeted biopsies (see Recommendation 3).
- Due to the limited availability, MPMRI is recommended only for patients where there is intent of curative treatment in the case of a positive biopsy.

Recommendation 3 (Recommendation to use the diagnostic tool)

- MPMRI should be performed and interpreted in compliance with the current Prostate Imaging Reporting and Data System (PI-RADS) Guidelines (v2.1 as of Summer 2020; see https://www.acr.org/Clinical-Resources/Reporting-and-Data-Systems/PI-RADS).
- MPMRI-TB is recommended for MRI lesions with a PI-RADS score of 4 or 5.
- MPMRI-TB or follow-up is recommended for MRI lesions with a PI-RADS score of 3 depending on the patient's risk profile.
- Biopsy avoidance should be considered when maximum PI-RADS score is 1 or 2 (see Recommendation 1 and 2).
- A structured MPMRI reporting template as recommended by the PI-RADS committee should be used (see <u>https://www.acr.org/Clinical-Resources/Reporting-and-Data-Systems/PI-RADS</u>).
- When a targeted biopsy is being performed a minimum of two cores should be taken per target with recommendation of four cores for the index lesion. If multiple lesions are described on MPMRI, the biopsy operator may distribute the number of biopsies to keep a reasonable overall core count during the biopsy session.
- MPMRI interpretation and MPMRI-TB should be performed by experienced operators.
- A provincial quality assurance program should be developed. Until this is in place, practitioners should have some form of local quality assurance in place.

Qualifying Statements for Recommendation 3

- Cognitive fusion, TRUS-MRI software-based fusion, and in-bore MPMRI guided biopsy are all acceptable methods of MPMRI-TB. TRUS-MRI fusion and in-bore MRI biopsy may improve target yield in selected patients.
- The use of bi-parametric MRI (BPMRI), meaning omitting the dynamic contrast-enhanced MRI (DCEMRI) may be considered in centres with experienced readers that can demonstrate performance similar to MPMRI.

Multiparametric Magnetic Resonance Imaging in the Diagnosis of Clinically Significant Prostate Cancer

Section 2: Guideline - Recommendations and Key Evidence

GUIDELINE OBJECTIVES

To make recommendations with respect to:

- a) The use of MPMRI in patients with an elevated risk of CSPCa who are biopsy naïve,
 b) The use of MPMRI-TB plus TRUS-SB or MPMRI-TB alone for biopsy-naïve patients who have undergone MPMRI;
- a) The use of MPMRI in patients with an elevated risk of CSPCa who have had a prior negative TRUS-SB defined as no prostate cancer on biopsy of any grade group,
 b) The use of MPMRI-TB plus TRUS-SB or MPMRI-TB alone for patients who have had a prior negative TRUS-SB defined as no prostate cancer on biopsy of any grade group;
- The minimum acceptable standards in the acquisition, interpretation and reporting of MPMRI and the minimal acceptable standards for performance of MPMRI-TB.

TARGET POPULATIONS

Patients with an elevated risk of CSPCa (defined as ISUP GG \geq 2), as estimated by available clinical information and tools such as risk calculators and nomograms, of who are A) biopsy naïve or B) have had a prior negative TRUS-SB defined as no prostate cancer on biopsy of any grade group.

INTENDED USERS

Radiologists, oncologists, urologists, and other clinicians who provide care for patients defined by the target population.

RECOMMENDATIONS, KEY EVIDENCE, AND JUSTIFICATION

Recommendation 1 (Recommendation to use the diagnostic tool)
For biopsy-naïve patients at elevated risk of CSPCa:
• MPMRI is recommended prior to biopsy in patients who are candidates for curative
management with suspected clinically localized prostate cancer.
 If the MPMRI is positive, MPMRI-TB and TRUS-SB should be performed together to
maximize detection of CSPCa.

• If the MPMRI is negative, consider forgoing any biopsy after discussion of the risks and benefits with the patient as part of shared decision making and ongoing follow-up.

Qualifying Statements for Recommendation 1

- Between 8% and 24% of patients with CSPCa may be missed by a negative MPMRI. For this reason, patients should be made aware of the risks and benefits of biopsy avoidance when MPMRI is negative.
- MPMRI should only be performed if there is availability of high-quality MPMRI interpretation and operators with experience performing targeted biopsies (see Recommendation 3).
- Due to the limited availability, MPMRI is recommended only for patients where there is intent of curative management should the biopsy be positive for CSPCa.

Key Evidence for Recommendation 1

Twenty-three trials (all full-text publications) compared MPMRI with a reference standard (n=5, all cohort studies) or with TRUS-SB (n=18 - 2 randomized controlled trials [RCTs] and 16 cohort studies) for biopsy-naïve men. The certainty of the aggregate study evidence for each comparison showed 14 of the 21 cohort studies to be at either low [1-3] or moderate [4-14] risk of bias based on a GRADE approach [15]. One [16] of the RCTs was assessed to be at low risks of bias and the other was assessed at being at unclear risk [17] (see Appendix 5).

- In the five studies [3-5,18,19] where template transperineal mapping biopsy (TTMB) was the reference standard, MPMRI ranges were sensitivity 87-96%, specificity 29-45%, positive predictive values (PPVs) 46%-65%, and negative predictive values (NPVs) 76-92% (Table 4-2). Of these five studies, PROMIS [3] was a prospective multicentre trial (MCT). In this study, it was estimated unnecessary biopsies could be reduced by up to 27%. MPMRI was more sensitive (88% vs. 48% [95% confidence interval (CI), 43 to 54]; p<0.0001), but less specific (45% vs. 99% [95% CI, 97 to 100]; p<0.0001) than TRUS-SB in this study [3].
- Two RCTs [16,17] compared CSPCa detection rates of MPMRI-TB versus TRUS-SB. Estimates for CSPCa when combining the two RCTs showed increased detection favouring MPMRI by 18% (95% CI, 5% to 32%, p=0.009; Figure 1.1). Estimates for the two RCTs combined for clinically insignificant prostate cancer (CISPCa) showed decreased detection favouring MPMRI by 9% (95% CI,-17% to 1%, p=0.03; Figure 1.2).
- In total, 16 cohort studies [1,2,6-14,20-24] and the two RCTs mentioned above presented detection rates comparing MPMRI-TB to TRUS-SB. Estimates for CSPCa showed increased detection favouring MPMRI-TB by 3% (95% CI, 0% to 7%, p=0.03; Figure 1.1). For CISPCa, the estimate showed decreased detection favouring MPMRI by 8% (95% CI,-11% to 5%, p<0.00001; Figure 1.2).
- Of the above cohort studies examining MPMRI-TB versus TRUS-SB, two [1,2] were prospective MCTs. A paired diagnostic study (MRI-FIRST) [1] enrolled 251 patients. Patients received both TRUS-SB and MPMRI-TB. There were no significant differences in the detection of CSPCa in MPMRI-TB versus TRUS-SB (32% vs. 30%, p=0.225). However, MPMRI-TB detected significantly less CISPCa than TRUS-SB (6% vs. 20%, p<0.0001). Five percent of CSPCa was detected by TRUS-SB that was missed by MPMRI-TB and 8% was detected by MPRI-TB and missed by TRUS-SB. Thus, detection of CSPCa was improved by combining TRUS-SB and MPMRI-TB [1]. Another prospective MCT enrolled 646 men to receive MPMRI followed by TRUS-SB and in-bore MPRI-TB [2]. This study showed similar CSPCa detection rates (25% vs. 23%, p=0.392); however, CISPCa was detected in significantly fewer patients by MPMRI-TB than in TRUS-SB (14% vs. 25%, p<0.0001). MPMRI-TB enabled biopsy avoidance in 49% of patients while missing only 35 cases with CSPCa. Meanwhile, TRUS-SB would have over-detected CISPCa in 20% of patients [2].
- Overall estimates for the studies [1,2,7-11,13,14,22-25] comparing MPMRI-TB plus TRUS-SB to targeted biopsy alone showed 6% increased CSPCa detection when combining the systematic and targeted biopsy (95% CI, 4% to 8%, p<0.00001; Figure 2.1) and 8% increased detection of CISPCa (95% CI, 6% to 10%, p<0.00001; Figure 2.2).

Justification for Recommendation 1

• The issue of how targeted biopsy alone should be interpreted in overall whole gland Gleason scoring has not been resolved in the care community. Targeted biopsy plus systematic biopsy is believed to be necessary if MPMRI is positive in biopsy-naïve patients as multifocality and positive biopsy in other regions not seen by MPMRI is important in clinical decision making and treatment planning given the use of focal dose escalation therapies. In addition, the risk of severe complications such as hospital admission for urosepsis does not increase when changing from targeted biopsy to targeted biopsy plus systematic biospy, although the risk of less severe complications does increase.

- Multiple MCTs have shown a decrease in CISPCa detection rate without reduction in CSPCa detection rate when using MPMRI-TB, compared with TRUS-SB.
- The principal value of MPMRI in biopsy-naïve patients is biopsy avoidance with up to a 49% reduction in biopsies [2] if MPMRI-negative patients are not biopsied.
- Although MPMRI may miss between 8% to 24% [3,19] of CSPCa in individual patients, these MPMRI-negative patients can be surveilled clinically, while avoiding the disadvantages of TRUS-SB, such as over-diagnosis of CISPCa and complications including urosepsis, urinary retention, hematuria and rectal bleeding. The patients that gain the most in the biopsy-naïve group are the MPMRI-negative patients. The primary goal is safe avoidance of CISPCa detection (over-detection) in this cohort. If no biopsy is performed, it is essential that the patient and urologist commit to ongoing follow-up given the risk of under-detection of CSPCa by MPMRI.
- MPMRI-TB combined with TRUS-SB in MRI-positive patients still allows for overall reduction in TRUS-SB in those patients who are MPMRI negative with only a slight increase in CISPCa detection (8%) while increasing CSPCa detection by 5%.

Recommendation 2 (Recommendation to use the diagnostic tool)

In patients who had a prior negative TRUS-SB and demonstrate a high risk of having CSPCa in whom curative management is being considered:

- MPMRI should be performed,
- <u>If the MPMRI is positive</u>, targeted biopsy should be performed. Concomitant TRUS-SB can be considered depending on the patients risk profile and time since prior TRUS-SB biopsy,
- <u>If the MPMRI is negative</u>, consider forgoing a TRUS-SB only after discussion of the risks and benefits with the patient as part of shared decision making and ongoing follow-up.

Qualifying Statements for Recommendation 2

- Prior negative TRUS-SB is defined as no cancer of any grade group on prior biopsy
- MPMRI should only be performed if there is availability of high-quality MPMRI interpretation and operators with experience performing targeted biopsies (see Recommendation 3).
- Due to the limited availability, MPMRI is recommended only for patients where there is intent of curative treatment in the case of a positive biopsy.

Key Evidence for Recommendation 2

Twenty-two trials (all full-text publications) compared MPMRI with a reference standard (n=7) or with TRUS-SB (n=15) for previously negative men. The certainty of the aggregate study evidence for each comparison showed 15 of the 22 studies to be at either low [26-29], moderate [5,6,8,11,12,30], or unclear [18,31-34] risk of bias based on a GRADE approach [15] (see Appendix 5).

- Seven studies reported on the diagnostic accuracy of MPMRI for previously negative patients [4,5,26,31-34] with sensitivities of 78%-100%, specificities of 30%-100%, PPVs of 36%-100%, and NPVs of 69%-100% (Table 4-5).
- The overall improvement in CSPCa detection rate for the 15 studies comparing MPMRI-TB alone to TRUS-SB was 5% (95% CI, 3% to 7%, p<0.0001; Figure 4.1) with a reduction of CISPCa detection of 7% (95% CI, 4% to 9%, p<0.00001; Figure 4.2).
- The overall improvement in CSPCa detection for the five cohort studies comparing MPMRI-TB plus TRUS-SB to MPRMRI-TB alone was 5% (95% CI, 2% to 8%, p=0.0005; Figure 5.1).

- The overall improvement across studies in CSPCa detection for MPMRI-TB plus TRUS-SB compared with TRUS-SB alone was 11% (95% CI, 8% to 14%, p<0.00001; Figure 6.1).
 Justification for Recommendation 2
- All the eligible studies show MPMRI-TB detected a higher number of CSPCa when compared with TRUS-SB.

Recommendation 3 (Recommendation to use the diagnostic tool)

- MPMRI should be performed and interpreted in compliance with the current PI-RADS Guidelines (v2.1 as of Summer 2020; see <u>https://www.acr.org/Clinical-</u> Resources/Reporting-and-Data-Systems/PI-RADS).
- MPMRI-TB is recommended for MRI lesions with a PI-RADS score of 4 or 5.
- MPMRI-TB or follow-up is recommended for MRI lesions with a PI-RADS score of 3 depending on the patient's risk profile.
- Biopsy avoidance should be considered when maximum PI-RADS score is 1 or 2 (see Recommendation 1 and 2).
- A structured MPMRI reporting template as recommended by the PI-RADS committee should be used (see <u>https://www.acr.org/Clinical-Resources/Reporting-and-Data-</u> Systems/PI-RADS).
- When a targeted biopsy is being performed a minimum of two cores should be taken per target with recommendation of four cores for the index lesion. If multiple lesions are described on MPMRI, the biopsy operator may distribute the number of biopsies to keep a reasonable overall core count during the biopsy session.
- MPMRI interpretation and MPMRI-TB should be performed by experienced operators.
- A provincial quality assurance program should be developed. Until this is in place, practitioners should have some form of local quality assurance in place.

Qualifying Statements for Recommendation 3

- Cognitive fusion, TRUS-MRI software-based fusion, and in-bore MPMRI-guided biopsy are all acceptable methods of MPMRI-TB. TRUS-MRI fusion and in-bore MRI biopsy may improve target yield in selected patients.
- The use of BPMRI, meaning omitting the DCEMRI may be considered in centres with experienced readers that can demonstrate performance similar to MPMRI.

Key Evidence for Recommendation 3

- This recommendation is based on expert opinion and review of the PI-RADS committee guidelines as well as the Standard Operating Procedure of the American Urological Association (AUA) <u>https://www.auanet.org/guidelines/mri-of-the-prostate-sop</u>.
- Four cores per lesion have been performed in recent MCTs evaluating MPMRI but if one combines systematic biopsy and four cores/lesion in a patient with multiple MPMRI lesions the core count will be unreasonable. Prior single-centre studies have shown small incremental and diminishing increases in target biopsy yield as core count increases [35-37]. For this reason, the operator is given discretion in the choice of number of cores per target for non-index lesions or when multiple lesions are present.
- MPMRI diagnostic performance varies by reader experience as does MPMRI-TB performance [38].

Justification for Recommendation 3

• All of the published studies demonstrating the performance of MPMRI involved diagnostic radiologists and biopsy operators with training and experience in performing MPMRI and MPMRI-TB. They all used defined five-point scoring schemes and, more recently, have used the PI-RADS v2 scoring scheme. To ensure similar performance in clinical practice,

radiologists interpreting MPMRI and practitioners performing MPMRI-TB should have experience and demonstrate consistent performance levels.

IMPLEMENTATION CONSIDERATIONS

Before MPMRI is used in clinical practice, physicians should be familiar with current PI-RADS prostate MRI protocol and reporting standards [39]. The patient care pathway in Ontario and the incorporation of MPMRI will need ongoing evaluation for impact on patient care and outcomes.

The value of MPMRI cannot be realized without attention to quality assurance. Studies have demonstrated only moderate agreement in PI-RADS scoring among readers [40,41] and a wide confidence interval for the PPV of PI-RADS score ≥ 3 (35% [95% CI, 27% to 43%]) [42]. There is currently no quality assurance program in place for MPMRI in Ontario. Quality standards or development of a quality assurance program should be in place before wide-scale adoption of these recommendations occurs outside of centres with established expertise. Since prostate MPMRI and MPMRI-TB involve new technologies, skills, and education, knowledge transfer to practitioners across the province should also be considered as part of implementation. Defining a quality assurance program metrics to consider collecting include: target yield (defined as the number of CSPCa detected per lesion biopsied) stratified by PI-RADS score and the number of false negative MPMRI (i.e., instances where MPMRI is reported as negative and a CSPCa is diagnosed at TRUS-SB or prostatectomy). Changes may be required in biopsy collection and reporting where all targeted biopsy specimens are labeled and placed in a separate vial that is labelled with target number and location.

Although cost-effectiveness and resource allocation issues are beyond the scope of this Program in Evidence-Based Care (PEBC) guideline, the Working Group (see Appendix 2) was sensitive to the fact that there are limited MRI resources in Ontario. Further study into the resource implications of the implementation of these guidelines is required especially in the biopsy-naïve population addressed in Recommendation 1. The lack of ready access to computeraided fusion biopsy systems may require the use of cognitive fusion biopsy in many centres which will require additional operator training. Cost savings from biopsy deferral in selected men choosing to forego TRUS-SB with negative MPMRI through shared decision making could be considerable. Further cost savings may be realized through judicious use of BPMRI (see below).

RISK ASSESSMENT AND PATIENT PERFERENCE

Patient preference and risk tolerance are important considerations. Clinicians together with patients should decide whether follow-up without biopsy after negative MPMRI, or in the case of positive MRI, MPMRI-TB or MPMRI-TB combined with TRUS-SB should be performed. Patients should be informed of the possibility of false-negative and false-positive results with MPMRI and the potential complications of prostate biopsy. A safety net with regular follow-up in those patients with negative MRI and an elevated risk profile should be part of the care plan.

MRI PROTOCOLS and BPMRI

MRI protocols should conform to the minimum technical requirements described in PI-RADS v2.1. Meticulous attention to technical parameters of prostate MPMPI is required as adherence to PI-RADS technical specifications varies [43-45]. A 2019 quality assurance project in Eastern Ontario demonstrated that consultation with experienced centres could improve adherence to PI-RADS technical specifications [45].

The use of BPMRI, meaning omitting the DCEMRI, from MPMRI remains a controversial subject. This is being considered as an alternative to MPMRI principally due to resource issues. By omitting DCEMRI, considerable savings in contrast agent cost and MRI time can be achieved.

This is highly relevant in the context of the expected increase in volume of prostate MRI with major implication on provincial MRI capacity, once MPMRI becomes the anticipated standard of care in biopsy-naïve patients. There are both single-centre studies and meta-analysis data showing noninferiority of BPMRI [46-49] to MPMRI; however, concern remains regarding the retrospective nature of these studies and the potential increase in indeterminate (PIRADS-3) interpretations using only BPMRI. Prospective MCT or trials comparing impact on decision making and outcomes between BPMRI and MPMRI are lacking. For this reason, MPMRI is still recommended as the standard of care; however, given anticipated resource pressures BPMRI can be performed at the discretion of the radiologist in centres that have demonstrated local BPMRI performance similar to MPMRI

For BPMRI, technical considerations are primarily related to the quality of diffusion weighted imaging. DCEMRI helps make up for deficiencies in poor quality diffusion weighted imaging that can occur, for example, in obese patients, in the presence of rectal gas, and in patients with hip prosthesis. If a radiologist or MRI technologist notes these issues with a BPMRI, MPMRI or call back for MPMRI should be considered.

It is expected that additional compelling evidence on the trade-offs in diagnostic performance between MPMRI and BPMRI, its relationship to cost, safety, decision making, and outcomes will alter practice in the future. As the cost implications of implementing MPMRI in Ontario for biopsy-naïve patients may be prohibitive, the Working Group members recognized that BPMRI may ease the financial burdens of performing MRI in this population and is a viable alternative to MPMRI in this population if carefully monitored.

GUIDELINE LIMITATIONS

The Working Group for this guideline did not include patient representatives. However, input from patient representatives was received during the project planning stage of the study and following recommendation development. A systematic review for this information was not performed. Working Group members used their prior clinical experiences involving men with increased risk for prostate cancer, along with patient representative comments, to guide the relevant values and preferences.

Further evidence will be required to define the role of MPMRI more precisely in the decision to perform prostate biopsy in biopsy-naïve men. Given the adoption of MPMRI in many health care systems, this guideline relies on expert opinion in several areas where evidence is lacking.

Multiparametric Magnetic Resonance Imaging in the Diagnosis of Clinically Significant Prostate Cancer

Section 3: Guideline Methods Overview

This section summarizes the methods used to create the guideline. For the systematic review, see <u>Section 4</u>.

THE PROGRAM IN EVIDENCE-BASED CARE

The PEBC is an initiative of the Ontario provincial cancer system, (OH [CCO]). The PEBC mandate is to improve the lives of Ontarians affected by cancer through the development, dissemination, and evaluation of evidence-based products designed to facilitate clinical, planning, and policy decisions about cancer control.

The PEBC supports the work of Guideline Development Groups (GDGs) in the development of various PEBC products. The GDGs are composed of clinicians, other healthcare providers and decision makers, methodologists, and community representatives from across the province.

The PEBC is a provincial initiative of OH (CCO) supported by the Ontario Ministry of Health (OMH). All work produced by the PEBC is editorially independent from the OMH.

JUSTIFICATION FOR GUIDELINE

The current PEBC (2015) guideline entitled "Multiparametric Magnetic Resonance Imaging in the Diagnosis of Clinically Significant Prostate Cancer" is outdated and no longer in keeping with the way in which this health state is currently being managed in other jurisdictions for biopsy-naïve men. There is contemporary, high-quality evidence addressing the utility of MRI in this setting.

GUIDELINE DEVELOPERS

This guideline was developed by the MPMRI in the Diagnosis of Clinically Significant Prostate Cancer GDG (Appendix 2), which was convened at the request of the Cancer Imaging Program (CIP) - in collaboration with Disease Pathway Map (DPM) and the Genitourinary Cancer disease site group (DSG).

The project was led by a small Working Group of the MPMRI in the Diagnosis of Clinically Significant Prostate Cancer GDG, which was responsible for reviewing the evidence base, drafting the guideline recommendations, and responding to comments received during the document review process. The Working Group had expertise in diagnostic imaging (MH, NS), radiation oncology (AL), urology (JC, NP), and health research methodology (JB). Other members of the MPMRI in the Diagnosis of Clinically Significant Prostate Cancer GDG served as the Expert Panel and were responsible for the review and approval of the draft document produced by the Working Group. Conflict of interest declarations for all GDG members are summarized in Appendix 2, and were managed in accordance with the <u>PEBC Conflict of Interest Policy</u>.

GUIDELINE DEVELOPMENT METHODS

The PEBC produces evidence-based and evidence-informed guidance documents using the methods of the Practice Guidelines Development Cycle [50,51]. This process includes a systematic review, interpretation of the evidence by the Working Group and draft

recommendations, internal review by content and methodology experts and external review by Ontario clinicians and other stakeholders.

The PEBC uses the AGREE II framework [52] as a methodological strategy for guideline development. AGREE II is a 23-item validated tool that is designed to assess the methodological rigour and transparency of guideline development and to improve the completeness and transparency of reporting in practice guidelines.

The currency of each document is ensured through periodic review and evaluation of the scientific literature and, where appropriate, the addition of newer literature to the original evidence-base. This is described in the <u>PEBC Document Assessment and Review Protocol</u>. PEBC guideline recommendations are based on evidence of the magnitude of the desirable and undesirable effects of an intervention or accuracy of a test, and take into account the certainty of the evidence, the values of key stakeholders (e.g., patients, clinicians, policy makers, etc.), and the potential impact on equity, acceptability and feasibility of implementation. A list of any implementation considerations (e.g., costs, human resources, and unique requirements for special or disadvantaged populations, dissemination issues, etc.) is provided along with the recommendations for information purposes. PEBC guideline development methods are described in more detail in the <u>PEBC Handbook</u> and the <u>PEBC Methods Handbook</u>.

Search for Guidelines

As a first step in developing this guideline, a search for existing guidelines was undertaken to determine whether any guideline could be endorsed. Articles were eligible for inclusion in the systematic review if they met the study selection criteria. The following sources were searched for guidelines with the search term(s) prostate cancer, prostate carcinoma, clinically significant, clinically insignificant, magnetic resonance (see Appendix 3 for detailed literature search): National Guideline Clearinghouse, National Health and Medical Research Council, New Zealand Guidelines Group, American Society of Clinical Oncology (ASCO), National Institute for Health and Clinical Excellence (NICE), Scottish Intercollegiate Guidelines Network (SIGN), MEDLINE (2013 through September 1, 2020), EMBASE (2013 through September 1, 2020), the Cochrane Central Register of Controlled Trials (OVID CCTR: September 2020), and the Database of Abstracts of Reviews of Effects (OVID DARE: 3rd guarter 2020). In addition, the proceedings of the meetings of the American Society of Clinical Oncology (ASCO: 2013 to 2020), the American Society of Therapeutic Radiology and Oncology (2013 to 2020), the American Urological Association (AUA: 2013-2020), the Canadian Urological Association (CAU: 2013-2020), American College of Radiology (ACR: 2013-2020), European Society of Urogenital Radiotherapy (ESUR: 2013 to 2020) and the European Society for Radiotherapy and Oncology (ESTRO: 2013 to 2020) were searched for relevant abstracts.

Assessment of Guideline(s)

There were no guidelines identified through the searches that met the inclusion criteria. A recent NICE guideline was excluded because it did not include the comparisons of interest. <u>https://www.nice.org.uk/guidance/conditions-and-diseases/cancer/prostate-cancer</u>.

PATIENT- AND CAREGIVER-SPECIFIC CONSULTATION GROUP

Two patients participated as Consultation Group members for the MPMRI in the Diagnosis of Clinically Significant Prostate Cancer Working Group. They reviewed copies of the project plan/draft recommendations and provided feedback on their comprehensibility, appropriateness and feasibility to the Working Group's Health Research Methodologist. The Health Research Methodologist relayed the feedback to the Working Group for consideration.

GUIDELINE REVIEW AND APPROVAL

Internal Review

For the guideline document to be approved, 75% of the content experts who comprise the GDG Expert Panel must cast a vote indicating whether or not they approve the document, or abstain from voting for a specified reason, and of those that vote, 75% must approve the document. In addition, the PEBC Report Approval Panel (RAP), a three-person panel with methodology expertise, must unanimously approve the document. The Expert Panel and RAP members may specify that approval is conditional, and that changes to the document are required. If substantial changes are subsequently made to the recommendations during external review, then the revised draft must be resubmitted for approval by RAP and the GDG Expert Panel.

External Review

Feedback on the approved draft guideline is obtained from content experts and the target users through two processes. Through the Targeted Peer Review, several individuals with content expertise are identified by the GDG and asked to review and provide feedback on the guideline document. Through Professional Consultation, relevant care providers and other potential users of the guideline are contacted and asked to provide feedback on the guideline recommendations through a brief online survey.

DISSEMINATION AND IMPLEMENTATION

The guideline will be published on the OH (CCO) website and may be submitted for publication to a peer-reviewed journal. The Professional Consultation of the External Review is intended to facilitate the dissemination of the guideline to Ontario practitioners. Section 1 of this guideline is a summary document to support the implementation of the guideline in practice. OH (CCO)-PEBC guidelines are routinely included in several international guideline databases including the CPAC Cancer Guidelines Database, the CMA/Joule CPG Infobase database, NICE Evidence Search (UK), and the Guidelines International Network (GIN) Library.

Implementation of guidelines developed by the PEBC may be undertaken by Cancer CIPin collaboration with DPM and the DSG.

ACKNOWLEDGEMENTS

The MPMRI in the Diagnosis of Clinically Significant Prostate Cancer GDG would like to thank the following individuals for their assistance in developing this report:

- Sheila McNair, Xiaomei Yao, Emily Vella, Laurie Elit, William Evans, Bryan Donnelly, Ryan Carlson for providing feedback on draft versions.
- Daniela Russo and Jilian Sing for conducting a data audit.
- Sara Miller for copy editing.

Multiparametric Magnetic Resonance Imaging in the Diagnosis of Clinically Significant Prostate Cancer

Section 4: Systematic Review

INTRODUCTION

Prostate cancer is the most common cancer among Canadian men, excluding nonmelanoma skin cancers, and is the third leading cause of death in Canadian male cancer patients [53]. It is estimated that on average, 11 Canadian men will die from prostate cancer every day in 2019 [53]. Given these statistics, early and accurate diagnosis for CSPCa in patients with an elevated risk is essential to determine optimal diagnostic and treatment options, thereby improving quality of life and/or survival outcomes.

There is variability in the definition for CSPCa; however, there is growing consensus that CSPCa is defined as any Gleason score (GS) \geq 3+4 (International Society of Urologic Pathologists GG \geq 2). The current standard for diagnosing CSPCa is TRUS-SB of 10 to 12 cores [54]. This is typically done after an assessment of clinical risk based on multiple parameters including the serum prostate specific antigen (PSA). Because TRUS-SB systematically samples areas from the prostate and not a specific imaged target, this approach has been shown to lead to overdetection of CISPCa [55] and can miss CSPCa [56]. Saturation biopsy techniques such as TTMB are more sensitive than TRUS-SB in detecting CSPCa [57]; however, this is too resource intensive and invasive a technique to be applied as a diagnostic tool in the early evaluation pathway of prostate cancer.

Over the past several years, there has been growing utilization of MPMRI as a noninvasive tool to help diagnose and localize CSPCa. When an MPMRI is performed, different tissue properties can be highlighted by manipulating the way the image is obtained. T2-weighted imaging, diffusion weighted imaging, and DCEMRI are performed and imaging features from these data sets are combined to determine the location of a cancer as part of the MPMRI examination. MPMRI followed by targeted biopsy (MPMRI-TB) means biopsy is performed directly at cancer-suspicious foci detected with MPMRI.

This is an update of previous PEBC document а https://www.cancercareontario.ca/sites/ccocancercare/files/guidelines/summary/pebc27-2s_1.pdf. In the previous 2015 guideline, we recommended "MPMRI followed by targeted biopsy (biopsy directed at cancer-suspicious foci detected with MPMRI) should not be considered the standard of care in biopsy naïve patients with an elevated risk of CSPCa" and "MPMRI followed by targeted biopsy may be considered to help in detecting more CSPCa patients compared with repeated TRUS-guided systematic biopsy in patients who had a prior negative TRUS-guided systematic biopsy and demonstrate a growing risk of having CSPCa". Recently, there have been several RCTs and MCTs regarding MPMRI in reducing CISPCa detection rates particularly in biopsy-naïve men without loss of sensitivity for CSPCa. There is a growing acceptance of MPMRI utilization internationally [6,7,16,17,25,27,58]. Thus, there is a need for reconsidering the previous recommendations with respect to the use of MPMRI in the diagnosis of CSPCa in men who have had a previously negative TRUS-SB. In addition, there is a lack of specific guidance in Ontario on performing and interpreting MPRMI or performing targeted biopsy. Thus, the Working Group (the guideline authors, including two radiologists, one radiation oncologist, two urologists, and one methodologist) of the MRI in Prostate Cancer GDG in association with the PEBC of OH (CCO) conducted a systematic review to summarize the relevant studies from the medical literature to develop a clinical guideline for Ontario. Based on the objectives of the guideline, the Working Group derived the research questions outlined below. The scope of these

recommendations does not include the use of MRI in active surveillance. The systematic review has been registered at the international prospective register of systematic reviews (<u>www.crd.york.ac.uk/prospero</u>) as CRD42020142786.

RESEARCH QUESTIONS

- Q1a. For biopsy-naïve patients at elevated risk (according to PSA levels and/or nomograms), how accurately does MPMRI or MPMRI followed by <u>targeted biopsy</u> diagnose CSPCa (GG ≥2), compared with the <u>reference standard</u>?
- Q1b. For biopsy-naïve patients at elevated risk, does MPMRI followed by <u>targeted biopsy</u> increase the detection rate of CSPCa (GG \geq 2) and reduce the detection rate of CISPCa positively change patient management, or improve patient outcomes (including side effects and survival outcomes), compared with <u>TRUS-SB</u> (of at least eight cores)?
- Q1c. For biopsy-naïve patients at elevated risk, does MPMRI followed by <u>targeted and</u> <u>systematic biopsies</u> improve the detection rate of CSPCa and reduce the detection rate of CISPCa, positively change patient management, or improve patient outcomes (including side effects and survival outcomes), compared with <u>TRUS-SB alone</u> (of at least eight cores) or <u>targeted biopsy alone</u>?
- Q2a. For patients with prior negative TRUS-guided biopsy at elevated risk, how accurately does MPMRI or MPMRI followed by <u>targeted biopsy</u> diagnose CSPCa, compared with the <u>reference standard</u>?
- Q2b. For patients with prior negative TRUS-SB at elevated risk, does MPMRI followed by <u>targeted biopsy</u> increase the detection rate of CSPCa and reduce the detection rate of CISPCa, positively change patient management, or improve patient outcomes (including survival outcomes and adverse events), compared with <u>TRUS-SB</u> (of at least eight cores)?
- Q2c. For patients with prior negative TRUS-SB at elevated risk, does MPMRI followed by <u>targeted and systematic biopsies</u> improve the detection rate of CSPCa and reduce the detection rate of CISPCa, positively change patient management, or improve patient outcomes (including side effects and survival outcomes), compared with <u>TRUS-SB</u> <u>alone</u> (of at least eight cores) or <u>targeted biopsy alone</u>?
- Q3a. What are the minimum acceptable standards to perform and report MPMRI for patients with an elevated risk of CSPCa who have been decided to undergo MPMRI examination?
- Q3b. What are the minimum acceptable standards for performance of image-guided targeted biopsy for patients with an elevated risk of CSPCa who have been decided to undergo MPMRI targeted biopsy?

METHODS

This evidence review was conducted in two planned stages, including a search for systematic reviews followed by a search for primary literature. These stages are described in subsequent sections.

Search for Systematic Reviews

MEDLINE, EMBASE, and the Cochrane Database of Systematic Reviews were searched for existing systematic reviews published since 2016. Relevant articles were identified by searches of MEDLINE (2016 - September 2020 week 36), EMBASE (2016 - 2020 week 36), and the Cochrane Library (2020). The reference lists of eligible trials were searched for relevant articles. Expert colleagues were also asked to identify any relevant unpublished or published trials not otherwise identified. The complete MEDLINE and EMBASE search strategies are detailed in Appendix 3.

Systematic reviews were included if they included eligible primary studies as listed below (Study Selection Criteria and Process). If more than one systematic review met the inclusion criteria, then one systematic review for each outcome per research question was selected by one of the authors (JB) based on its age, quality, and the best match with our study selection criteria stated below.

Search for Primary Literature

Since no recent systematic reviews were found, the primary literature was searched using MEDLINE (May 2013 through September 1, 2020), EMBASE (May 2013 through September 1, 2020), the Cochrane Central Register of Controlled Trials (OVID CCTR: September 2020), and the Database of Abstracts of Reviews of Effects (OVID DARE: 3rd quarter 2020). In addition, the proceedings of the meetings of the ASCO (2013 to 2020), the American Society of Therapeutic Radiology and Oncology (2013 to 2020), the American Urological Association (AUA: 2013 -2020), the Canadian Urological Association (CAU: 2016-2020), American College of Radiology (ACR: 2013-2019), European Society of Urogenital Radiotherapy (ESUR: 2013 to 2020) and the European Society for Radiotherapy and Oncology (ESTRO: 2013 to 2020 were searched for relevant abstracts. The literature search of the electronic databases combined disease-specific terms (prostate cancer, prostate carcinoma, etc.) and treatment-specific terms (magnetic resonance, etc.) for all study designs (Appendix 3).

Study Selection Criteria and Process

Articles were eligible for inclusion in the systematic review if they met the following criteria:

- They were full text, or abstracts that were RCTs, or observational comparative studies ≥100 patients,
- They included men with an elevated risk of CSPCa (according to PSA levels and/or nomograms) who have had a prior negative TRUS-SB or were biopsy-naive,
- They used a reference standard (Q1a and Q2a) that is post-operational pathological report, TTMB/saturation biopsy (≥20 cores) for MPMRI-positive patients or MPMRI followed by targeted biopsy-positive patients, or clinical follow-up for negative results,
- For questions 1a, 2a, they report on outcomes that include accuracy of diagnosis for CSPCa (i.e., sensitivity, specificity, predictive value, etc.),
- For questions 1b, 1c, 2b, 2c, they compare increasing detection rate for CSPCa and reduction detection rates of CISPCa in patient who undergo and do not undergo MPMRI,

• They report a CSPCa definition that includes a threshold of GS \ge 3+4 (GG \ge 2).

Studies were excluded if they:

- Were studies or abstracts published in a language other than English,
- Were published in the form of letters, editorials, commentaries, or non-systematic review or non-meta-analysis,
- Included patients with diagnosis of prostate cancer at baseline,
- Included reference standard that was MPMRI followed by targeted biopsy or MPMRI plus TRUS-SB.

Data Extraction, Assessment of Risk of Bias, Study Quality and Certainty of the Evidence

All relevant papers identified by the literature search were assessed against the above selection criteria independently by one of the authors (JB) (see Appendix 2 for a list of authors of this report). Uncertainty regarding eligibility was resolved by consensus of all the authors.

The QUADAS-2 (Quality Assessment of Diagnostic Accuracy Studies-2) [59] was used to assess study quality in four key domains: patient selection, index test(s), reference standard, and flow and timing. The signalling questions in each domain are rated in terms of risk of bias (low, high, unclear) and concerns regarding applicability (low, high, unclear), with associated signalling questions to help with bias and applicability judgments.

The RCTs were assessed using Cochrane's Risk of Bias tool [60] using the following six domains of bias: random sequence generation, allocation concealment, blinding participants, personnel and outcome assessment, incomplete outcome data, selective reporting, and other concerns. Each domain was judged as being at low, high, or an unclear risk of bias.

The risk of bias for cohort studies was assessed using a modified ROBINS-I tool [61] using the following seven domains of bias: confounding, selection of participants, measures of intervention and outcomes, departure from intervention, incomplete outcome data, selective reporting, and other concerns. The judgment of each domain includes three categories: a low, high, or unclear risk of bias.

Synthesizing the Evidence

If there is no clinical heterogeneity for patient characteristics, MPMRI techniques, etc., for detection rates from two or more studies, meta-analyses were planned assuming a two-sided significance level of $\alpha = 0.05$ and to be performed with the software RevMan 5.3.1 [62]. To keep consistent, all the outcomes in the Tables were calculated by using the same software (RevMan 5.3.1). Outcomes that include accuracy of diagnosis for CSPCa are reported (i.e., sensitivity, specificity, PPV and NPV) in Table format. Results from the previous version of this report are presented (Appendix 7). Subgroup analysis by MPMRI-TB techniques (software, cognitive, in-bore, etc.) used were assessed (Appendix 8).

Assessment of the Certainty of the Evidence

The certainty of the evidence per outcome for each comparison, taking into account risk of bias, inconsistency, indirectness, imprecision, and publication bias was assessed by using GRADE (Grading of Recommendations, Assessment, Development, and Evaluation) approach [15].

RESULTS

Literature Search Results

No systematic reviews or guidelines met the inclusion criteria.

The Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) flow diagram summarizing this information is provided in Appendix 4.

Articles were retrieved from the MEDLINE (n=2999) and EMBASE (n=6000) databases, and additional records were identified through other sources (Cochrane, conference abstracts, hand-searching of reference lists of included studies n=215). After duplicates were removed from the combined search results, 3754 articles were assessed by title and abstract for possible inclusion in the evidence summary. Of these, 3555 articles were rejected at the title level and the remaining 199 were assessed at the level of full text.

Thirty six studies from 39 publications [1-14,16-34,58,63-67] were included to answer questions 1 and 2, with the most recent publication used where multiple reports existed. Given that there were very few studies fulfilling the inclusion criteria for Q3a and Q3b, recommendations for these questions were based on expert opinion.

Study Characteristics

Table 4-1 shows the characteristics of the studies. Of the 36 studies, 14 had populations that were biopsy naïve (Q1) [1-4,7,9,10,13,14,16,17,19,25,64], 11 had populations that had at least one previously negative systematic biopsy (Q2) [26-28,30-34,58,65,66], and the remaining 11 examined both biopsy-naïve and repeat biopsy populations (and reported on them separately) [5,6,8,11,12,18,20-24]. Seven of the studies were RCTs [6,7,16,17,25,27,58] and the remaining were cohort studies (9 retrospective, 20 prospective). The non-randomized intervention arms of four of the RCTs were of interest for questions Q1 and Q2 [6,7,25,27] and were treated as cohort studies for portions of these questions. Although one of the studies was considered an RCT [6], the only population of interest for questions 1 and 2 was from a side-study of non-randomized patients and thus is only considered a cohort study in this report.

Fifteen studies were included in the original version of this report <u>https://www.cancercareontario.ca/sites/ccocancercare/files/guidelines/summary/pebc27-</u>2s_1.pdf. One was an RCT [68], five were prospective studies [69-73], six were retrospective studies [54,56,74-77], and three articles [78-80] did not report their study designs. Data extracted from these studies are added to the analysis in Appendix 7.

Author year (n)	Design (description by	Age ±SD ^a (years) (range)	PSA±SD ^a (ng/mL) (range)	Prior biopsy	PI-RAD Version			
Author, year (ii)				/ cores (range)	Version			
Mixed Population (Biopsy Naïve & Prior Negative reported separately)								
Alberts, 2018 [6] (n=158 [BN	Side-cohort study of	Med. 73.1 (IQR 72.3-74.0)	Med. 4.3 (IQR 3.4-5.7)	Med. 1 (0-2)	2			
74, PN 84])	non-randomized			/ NR				
7 centres, no TTMB	patients from an RCT							
Borkowetz, 2017 [8] (n=578	Prospective study	Med. 66 (Min 46; Max;86)	Med. 8.17 (Min 1; Max12)	NR/NR	1&2			
[BN 133, PN 445])								
Single centre, no TTMB								
Filson, 2016 [11] (n=652 [BN	Prospective cohort	Med. 64.4 (IQR 58.5-69.4);	Med. 5.8 (IQR 4.4-8.1); Med.	NR/NR	2			
328, PN 324])		Med. 65.7 (IQR 59.3-70.2)	7.6 (IQR 5-11.5)					
Single centre, no TIMB								
Hansen, 2016 [18] (n=402	Retrospective outcome	Med. 65 (IQR 59-69)	Med. 7.8 (IQR 0-12)	NR/NR	1			
[BN 107, PN 295])	study.							
Single centre, TTMB	Droopostivo study	Mod 65 (IOD 61 60)	Mod 81 (IOD 50 120)		2			
IRN 204 DN 150)	Flospective study	Med. 05 (IQR 01-09)	Med. 6.1 (IQR 5.9-12.0)		2			
2 centres no TTMB								
Mariotti 2016 [20]	Retrospective analysis	Centre 1: mean 62.8+8.0	Centre 1: mean 8 0+5 6	NR/NR	NR			
(BN=246 PN=143)	of prospectively	Centre 2: mean 62 7+9 2	Centre 2: mean 6 4+6 2					
2 centres, no TTMB	generated data.							
Meng. 2015 [21] (n=464 [BN	Retrospective analysis	Mean 65.2 (8.0)	Mean 6.7 (0.3)	NR/NR	NR			
292, PN172])	of prospectively							
Single centre, no TTMB	acquired cohort							
Mortezavi, 2018 [5] (n= 249	Retrospective analysis	Med. 64 (IQR 58-69)	Med. 6.7 (IQR 4.4-9.6)	NR/NR	NR			
[BN163, PN 86])			[24]					
Single centre, TTMB								
Preisser, 2019 [22] (n=219	Retrospective analysis	Med. 67 (IQR 60-73)	Med. 8.4 (IQR 5.5-11.8)	55 = 1 prior	1			
[BN141, PN78])				biopsy, 23 ≥ 2				
1 centre, no TTMB				biopsy, / Med per				
				session 4 (3-6)	<u>^</u>			
Westoff, 2019 [23] (n=517	Retrospective analysis	Med 66.9 (IQR 61-73.1)	Med. 7.6 (5.6-11.9)	NR/ Med. 2 (IQR	2			
[BN 307, PN 210])				2-3)				
	Detreenentive study	RN: Maap 61 27 (9.00)	RN: Maan 6 67 (6 24)		1			
Zalesky, 2019 [24] (11–300 [RN 211 RN 1741) single	Reirospective study	DN. Mean $01.37 (0.09)$	DN: Meall 0.07 (0.24)		I			
centre no TTMB		F11.04.40(0.14)	FIN. 10.00 (7.00)					
Biopsy Naïve	I		1	1	1			
Ahmed, 2017 [3] (n=576)	Prospective multi-	Mean 63.4 ± 7.6	Mean 7.1 ± 2.9 (Range: 0.5-	NA	1.			
PROMIS study	centre, paired-cohort		15)					

Table 4-1. Study and patient characteristics by type of population

Author, year (n)	Design (description by author)	Age ±SD ^a (years) (range)	PSA±SD ^a (ng/mL) (range)	Prior biopsy number (range) / cores (range)	PI-RAD Version
(see also Brown, 2018) 11 centres. TTMB					
Baco, 2016 [7] (n=175, G1 86, G2 89]) Single centre, no TTMB	RCT	Mean 65 (59-69)	7.3 (5.5-9.9)	0	2
Borkowetz, 2018 [9] (n=214) 2 centres, no TTMB	Multicentre, prospective trial	Med. 63 (Min 40; Max75)	Med. 6.22 (Min 1; Max49)	NA	1&2
Castellucci, 2017 [10] (n=168) Single centre, no TTMB	Prospective single centre cohort study	Mean 61.4 (± 7.6)	Mean 8.3 (± 6.1)	NA	1
Hansen, 2018 [4] (n=807 [centre 1 163, centre 2 402, centre 3 242]) 3 centres, TTMB	Prospective cohort	Setting Centre 1: Median 64 (IQR 57-69) Setting Centre 2: Median 65 (IQR 60-70) Setting Centre 3: Median 65 (IQR 60-70)	NR	NA	1
Kasivisvanathan, 2018 [16] (n=500 [G1 252, G2 248]) <u>PRECISION study</u> 25 centres, no TTMB	RCT	MRI Targeted Biopsy Group: Mean 64.4 ± 7.5 Standard Biopsy Group: Mean 64.5 ± 8.0	MRI Targeted Biopsy Group: Med. 6.75 IQR (5.16-9.35) Standard Biopsy Group: Med. 6.50 IQR (5.14-8.65)	NA	2
Peltier, 2015 [64] (n=110) Single centre, no TTMB	Prospective study	Mean 65.1 ± 7.1; Med. 65.8 (Range: 48.0-79.2;IQR 59.5-70.7)	Mean 8.4 ± 6.3; Med. 6.9 (Range; 0.7-40.0;IQR 4.6-9.6)	NA	1
Porpiglia, 2017 [17] (n=212 [Arm A 107, Arm B 105]) Single centre, no TTMB	2 RCT Arm A: Med. 64 (IQR 58- 70) Arm B: Med. 66 (IQR 60- 70)		NA	1	
Rouviere, 2019 [1] (n=251) <u>MRI-first</u> <i>16 centres</i> , no TTMB	Prospective multicentre study	Med. 64 (IQR 59-68)	Med. 6.5 (IQR 5.6-9.6)	NA	2
Sarkar, 2019 [13] (n=100) 1 centre, no TTMB	Prospective comparative effectiveness study	Mean 68 (46-83)	Med. 7.6 (NR)	NA	2
Thompson, 2016 [19] (n=344) 2 centres, TTMB	Prospective cohort	Med. 62.9 (IQR 55.9-67.1)	Med. 5.2 (IQR 3.7-7.1)	NA	1
Tonttila, 2016 [25] (n=130 [MPMRI 65, Control 65]) Single centre, no TTMB	RCT	Med. 63 (IQR 60-66); Med. 62 (IQR 56-67)	Med. 6.1 (IQR 4.2-9.9); Med. 6.2 (IQR 4.0-10.7)	NA	NR

Table 4-1. Study and patient characteristics by type of population

Table 4-1. Study and patient characteristics by type of popu	ulation
--	---------

Author, year (n)	Design (description by author)	Age ±SD ^a (years) (range)	PSA±SD ^a (ng/mL) (range)	Prior biopsy	PI-RAD Version
, addier, year (ii)				/ cores (range)	
Van Der Leest, 2019 [2] (n=626) 7 <i>centres</i> , no TTMB	Prospective, multicentre, powered, comparative effectiveness study	Med. 65 (IQR 59-68)	Med. 6.4 (IQR 4.6-8.2)	NA	2
Zhang, 2017 [14] (n=224) Single centre, no TTMB	Prospective study	Med. 69 (40-85)	Med. 10.05 (3.61-78.39)	NA	1
Prior Negative					
Arsov, 2015 [27] (n=210 [G1 104, G2 106]) Single centre, no TTMB	RCT	Mean.65.3 ± 7.6 /, 66.7 ± 6.8 Med. 66 (60-71)/ 68 (63-71)	Mean 12.6 ± 7.7 / 14.5 ± 16.7 Med. 10.0 (IQR 7.8-14.9)/ 10.8 (IQR 7.4-15.5)	NA	1
Boesen, 2018 [28] (n=289) Single centre, no TTMB	Prospective study	Med. 64 (IQR 59-67)	Med. 12.0 (IQR 8.3-19)	Med. 2 (1-6) / NR	1
Hansen, 2017 [31] (n=487 [centre 1 287, centre 2 200] 2 centres, <i>TTMB</i>	Prospective cohort study	Median 66 (IQR 60-71)	Median 9.7 (IQR 7.1-13.9)	NR/NR	1&2
Lian, 2017 [30] (n=101) 2 centres, no TTMB	Prospective study	Mean 68.9 ± 8.1	Mean 10.8 ± 6.1	Mean 1.5 ± 0.7/NR	1
Pepe, 2015 [32] (n=100) Single centre, <i>TTMB</i>	Prospective study	Med. 64 (IQR 49-72)	Med. 8.6 (Range: 4.2-10)	1/18	1
Pepe, 2017 [34] (n=150) Single centre, <i>TTMB</i>	Prospective study	Med. 62 (IQR 47-78)	Med. 9.2 (Range: 4.5-31)	NR/NR	1
Pepe, 2018 [33] (n=1,032) Single centre, <i>TTMB</i>	Prospective study	Med. 63 (Range: 47-78)	Med. 8.6 (3.5-46)	NR/NR	1&2
Say, 2016 [65] (n=143) Single centre, no <i>TTMB</i>	Retrospective study	Med. 64.1 (47-82)	Med.DA 11.6 (range 0.4-96.9)	1.8 (Range 1- 5)/NR	1
Sidana, 2018 [66] (n=779) Single centre, no TTMB	Retrospective review of prospectively maintained database /PN	Med. 63.1 (IQR 58.5-68.0)	Med. 8.5 (5.9-13.1)	2 (IQR 1-16) /NR	2
Simmons, 2018 [26] (see also Simmons 2017) (n=249) PICTURE study Single centre, <i>TTMB</i>	Single centre, prospective cohort	Mean 62 ± 7 (Range: 42- 83)	Med. 6.8 (4.8-9.8)	Mean 1.41 ± 0.69 (IQR 1-2)/NR	NR
Wegelin, 2019 [58] (n=234) (see also Exterkate, 2020 [29]152 underwent both TB and SB)	RCT	Mean 64.7 (SD 6.6),	mean PSA 10.4 ng/ml (SD 7.3)	Med. 1 (IQR 1–2)	2

Table 4-1. Study and patient characteristics by type of population

Author, year (n)	Design (description by author)	Age ±SDª (years) (range)	PSA±SDª (ng/mL) (range)	Prior biopsy number (range) / cores (range)	PI-RAD Version		
MRI vs. MRI							
3 centres, no TTMB							
FUTURE trial							
BN = biopsy naïve; DA = diagno	stic accuracy; G1 = group	1; G2 = group 2; IQR = interqua	artile range; Med = median; MPMF	RI = multiparametric	magnetic		
resonance imaging; MRI = magnetic resonance imaging; NA = not applicable; NR = not reported; PI-RAD = Prostate Imaging – Reporting and Data System; PN							
= previously negative; PSA = prostate-specific antigen; RCT = randomized controlled trial; SB = systematic biopsy; SD = standard deviation; TB = targeted							
biopsy; TTMB = template transp	erineal mapping biopsy						

Biopsy-naïve patients (Question 1)

Q1a MPMRI (±TB) vs. Reference Standard

Risk of bias assessment for individual studies

Five trials assessed the diagnostic accuracy of MPMRI (±TB) against a reference standard (TTMB). Appendix 5a shows the risk of bias and applicability using the QUADAS-2 tool [59]. All five studies were assessed as being at low risk of bias on the domains of patient selection and index testing. Two studies [4,5] were assessed as being at moderate risk of bias on the reference standard, two were assessed at unclear risk [18,19] and one was assessed as low on this domain [3]. One study [19] was assessed as unclear on the domain of flow and time; the remaining were assessed as low on this domain. All studies were assessed at being at low risk for the applicability concerns regarding patient selection, index testing, and the reference standard. One [3] of the five studies was assessed overall at low risk of bias on the QUADAS-2 tool, two were assessed overall at being at moderate risk of bias [4,5], and two [18,19] was assessed overall at being at unclear risk of bias (see Appendix 5).

For the most part, the diagnostic accuracy outcomes (sensitivity, specificity, etc.) across the five articles assessing the diagnostic accuracy of MPMRI (\pm TB) for biopsy-naïve patients were comparable, with all showing relatively high sensitivity and low specificity (see Table 4-2) indicating a high false-positive rate. The aggregate study evidence certainty for the comparisons was moderate to low after considering the other four factors (inconsistency, indirectness, imprecision, and publication bias) together from the GRADE approach (traditional GRADE summary tables not presented) [15].

Outcomes (MPMRI [±TB] vs. Reference Standard)

Five cohort studies addressed Q1a. Table 4-2 shows the diagnostic accuracy of MPMRI (\pm TB), compared to a reference standard for CSPCa. All five cohort studies [3-5,18,19] reported diagnostic accuracy outcomes for MPMRI (\pm TB) in biopsy-naïve patients. Three studies compared MPMRI alone to a reference standard [4,18,19] and two compared the reference standard to MPMRI followed by software fusion-guided targeted biopsy [3,5]. Reported mean/median age for the five studies ranged from of 63 [3,19] to 65 [18] years and PSA ranged from 5.2 [19] to 7.8 ng/mL [18] (Table 4-1).

MPMRI alone

In the 2016 Hansen et al. study [18] the prevalence of CSPCa among 107 patients was 39%. The sensitivity and specificity of MPMRI alone to detect CSPCa was 93% (95% CI, 85 to 101) and 29% (95% CI, 18 to 40), respectively, indicating that 7% of true CSPCa patients were missed and 71% of patients without CSPCa were falsely diagnosed. Among the MPMRI-positive patients, 46% (PPV) of patients had CSPCa; among the MPMRI-negative patients, 14% (NPV=86%) of patients were true CSPCa patients (see Table 4-2). In the 2018 Hansen et al. study [4] the prevalence of CSPCa among 807 patients was 49%. The sensitivity and specificity of MPMRI alone to detect CSPCa was 88% (95% CI, 85 to 91) and 45% (95% CI, 41 to 50), respectively, indicating that 12% of true CSPCa patients were missed and 55% of patients without CSPCa were falsely diagnosed. Among the MPMRI-positive patients, 60% (PPV) of patients had CSPCa; among the MPMRI-negative patients. In Thompson et al. [19], the prevalence of CSPCa among 344 patients was 42%. The sensitivity and specificity of MPMRI alone to detect CSPCa was 96% (95% CI, not reported) and 36% (95% CI, not reported), respectively, indicating that 4% of true CSPCa patients were missed and 64% of patients without CSPCa were falsely diagnosed. Among the MPMRI-positive patients were missed and 64% of patients without CSPCa were falsely diagnosed. Among the MPMRI-positive patients were missed and 64% of patients without CSPCa were falsely diagnosed. Among the MPMRI-positive patients were missed and 64% of patients without CSPCa were falsely diagnosed. Among the MPMRI-positive patients were missed and 64% of patients without CSPCa were falsely diagnosed. Among the MPMRI-positive patients, 52% (PPV) of patients had

CSPCa; among the MPMRI-negative patients, 8% (NPV=92%) were true CSPCa patients (see Table 4-2).

MPMRI-TB

In the Ahmed et al. study [3] the prevalence of CSPCa among 576 patients was 53%. Using MPMRI plus software fusion targeted biopsy, the sensitivity and specificity of MPMRI to detect CSPCa was 88% (95% CI, 84 to 91) and 45% (95% CI, 39 to 51), respectively, indicating that 12% of true CSPCa patients were missed and 55% of patients without CSPCa were falsely diagnosed. Among the MPMRI-positive patients, 65% (PPV) of patients had CSPCa; among the MPMRI-negative patients, 24% (NPV=76%) were true CSPCa patients. In the 2018 Mortezavi et al. study [5] the prevalence of CSPCa among patients was 26%. The sensitivity and specificity of MPMRI and TRUS fusion (software)-guided targeted biospy to detect CSPCa was 87% (95% CI, 80 to 95) and 45% (95% CI, 35 to 56), respectively, indicating that 13% of true CSPCa patients were missed and 55% of patients without CSPCa were falsely diagnosed. For MPMRI alone, among the MPMRI-positive patients, 59% (PPV) had CSPCa; among the MPMRI-negative patients, 20% (NPV=80%) were true CSPCa patients (see Table 4-2).

Study	Index test	Positive MRI	Reference standard	CSPCa	Sensitivity	Specificity	Positive	Negative
(Prevalence of				definition			Predictive	Predictive
CSPCa)							Value	Value
MPMRI Alone								
Hansen, 2016	T2WI+ DWI+	PI-RAD v1 ≥3 of	24-core systematic biopsy	GS 7 to 10	92.9% (85,101)	29.2% (18,40)	45.9% (35,56)	86.4% (72,101)
n=107	DCE	5	according to the Ginsburg					
(39%)			TRUS-SB protocol					
Hansen, 2018	T2WI+ DWI+	PI-RAD v1 ≥3 of	18-24 core systematic TP	GS 7 to 10	87.8% (85,91)	45.3% (41,50)	60.2% (56,64)	79.7% (75,85)
n=807	DCE	5	biopsy according to the					
(49%)			Ginsberg TRUS-SB protocol					
Thompson,	T1WI+ T2WI+	PI-RAD v1 ≥3 of	Median of 30 cores with	GS 7 to 10	96% (NR,NR)	36% (NR,NR)	52% (NR,NR)	92% (NR,NR)
2016 n=344	DCE	5	relative periurethral zone					
(42%)			sparing and adjusted for					
			volume					
МРМТІ-ТВ								
Ahmed, 2017	T1WI+T2WI+	PI-RAD v1 ≥3 of	ТРМВ	Any GS 7 (≥3+4)	88% (84-91)	45% (39-51)	65% (60-69)	76% (69-82)
n=576	DWI+DCE +	5						
(530()	MRI-directed							
(53%)	(<u>software</u>) I R							
Martha and 2010	US blopsy		TRUD	- CC - 7	070/ (00.05)		F0.0% (F0.40)	70 (0/ ((0.04)
Mortezavi, 2018	IZWI+ DWI+	PI-RAD (NR) ≥3	IPMB	G2 ≥/	87% (80,95)	45.3% (35,56)	58.8% (50,68)	79.6% (68,91)
n=103		C 10						
(20%)	(coftware)							
	(<u>sortware</u>)							
*using the 2014 In	tornational Soci	oty of Urologic Pat	hology (ISLIP) critoria	I				
$CSPC_{2} = clinically$	cignificant pro	ety of ofologic Pau	- dynamic contract onbancos	I magnetic reconand	o impaind: DWI -	diffusion woighted	imaging: CS - Clos	con Scoros MDMDI -

Table 4-2. (Q1a) Cohort studies examining diagnostic accuracy of MPMRI (±TB) in biopsy-naive patients (compared with reference standard) by different definitions of clinically significant cancer

CSPCa = clinically significant prostate cancer; DCE = dynamic contrast enhanced-magnetic resonance imaging; DWI = diffusion weighted imaging; GS = Gleason Score; MPMRI = multiparametric magnetic resonance imaging; NR = not reported; PI-RAD = Prostate Imaging Reporting and Data System; TB = targeted biopsy; TP = transperineal; TPMB = template prostate mapping biopsy; TR = transrectal; TRUS-SB = transrectal ultrasound systematic biopsy; T1WI = T₁-weighted imaging; T2WI = T₂-weighted imaging;

Q1b MPMRI-TB vs. TRUS-SB

Risk of bias assessment for individual studies

Eighteen studies (2 RCTs and 16 cohort studies) compared MPMRI-TB with TRUS-SB. Appendix 5b shows the risk of bias assessment using the Cochrane Risk of Bias Tool [60] for two RCTs included for these comparisons. Both were assessed at low risk of bias on random sequence generation and whether participant group allocation was concealed. Blinding of participants and direct personnel was not possible in these types of studies and would not likely influence diagnostic outcomes; thus, blinding of participants was not assessed. It was unclear in one of the RCTs [17] whether outcome assessor blinding was implemented and whether outcome data reporting was complete. The other RCT [16] was rated at low risk of bias on these two domains. Both RCTs were rated at low risk of bias in the area of selective reporting. Overall, one RCT [16] was assessed at being at low risk of bias and one [17] was assessed as being at unclear risk of bias using the Cochrane Risk of Bias tool for RCTs (see Appendix 5).

Appendix 5c shows the risk of bias outcomes for 16 cohort/intervention studies comparing MPMR-TB with TRUS-SB using the ROBINS-I tool [61]. All studies were rated at low risk of bias for confounding. Five studies were assessed at high risk of bias for selection of participants, due to their retrospective nature or to non-consecutive patient selection [20-24]; two [8,13] were assessed as moderate on this domain and the remaining studies were rated as low. Three studies [1,2,6] were assessed at low risk of bias on measurement of intervention and it was unclear in one of the studies [13]. The remaining studies were assessed as being at moderate risk of bias on measurement of intervention mainly due to different versions of PI-RAD being used during the study period or lack of clarity regarding measurement. Eight studies [1,2,6,7,14,22-24] were assessed as being at low risk of bias for departure from intervention and the remaining were assessed as moderate on this domain due to clarity of how intervention was implemented during the study period. Two studies [6,12] were assessed as being at moderate risk of bias due to missing data and the remainder was assessed as being at low risk of bias on this domain. All studies measuring detection rates were assessed as being at moderate risk of bias on measurement of outcome either because it was unclear whether the outcome assessor was blinded to the index test when measuring the reference standard or because no reference standard was used to assess the accuracy of both the MPMRI and TRUS-SB detection. Two of the studies were rated at moderate risk of bias on the domain of selection of reported results [8,22]. The remaining studies were rated low on this domain. Overall, five of the cohort studies were assessed at high risk of bias [20-24] and two were assessed at low risk [1,2]. The remaining cohort studies were assessed overall at being at moderate risk of bias on the ROBINS risk of bias tool.

For CSPCa, confidence intervals were narrow, mainly falling in the same direction of effect favouring MPMRI-TB for the above studies comparing MPMRI-TB to TRUS-SB. Study heterogeneity were relatively high ($l^2=63\%$, p=0.00001), with indication of subgroup differences between the RCTs and cohort studies ($l^2=81.2\%$, p=0.02) (see Figure 1.1). There was no indication of subgroup differences among the types of MPMRI-TB (software, cognitive, in-bore, etc.) used ($l^2=17.9\%$, p=0.30 - see Appendix 8 for subgroup analysis by type of MPMRI-TB).

For CISPCa, confidence intervals were narrow mainly falling in the same direction of effect favouring MPMRI-TB. Study heterogeneity was high ($I^2=71\%$, p<0.00001), with no significant subgroup differences between RCTs and cohort studies ($I^2=0\%$, p=0.77 see Figure 1.2) and no significant differences among MPMRI-TB types ($I^2=17.1\%$, p=0.30 - see Appendix 8).

The aggregate study evidence certainty for the comparisons was moderate to low after considering the other four factors (inconsistency, indirectness, imprecision, and publication

bias) together from the GRADE approach (traditional GRADE summary tables not presented) [15].

Outcomes (MPMRI-TB vs. TRUS-SB)

Tables 4-3 and Figures 1.1 and 1.2 show the estimates for CSPCa and CISPCa for the 18 (16 cohort and 2 RCT) studies assessing biopsy-naive patients, Estimates for CSPCa show an overall effect of 0.03 (0.00 to 0.07, p=0.05) (see Figure 1.1). For CISPCa, the overall effect was -0.08 (95% CI, -0.11 to -0.05, p<0.00001) (see Figure 1.2).

RCTs

Table 4-3 and Figures 1.1 and 1.2 show the detection rates of CSPCa and CISPCa for the two RCTs comparing MPMRI-TB to TRUS-SB alone for biopsy-naïve patients [16,17]. In a multicentre, non-inferiority trial, Kasivisvanathan et al. [16] randomized 500 biopsy-naïve men to either MPMRI [MPMRI+TRUS fusion] (mean age 64.4 years, median PSA 6.8 ng/mL) or TRUS-SB alone (mean age 64.5 years, median PSA 6.5 ng/mL). CSPCa was defined as GS \geq 3+4. Likewise, Porpiglia et al. [17] randomized 212 men to either MPMRI (±TB) [(MPMRI(+), TRUS fusion] (median age 64 years, median PSA 5.9 ng/mL) or TRUS-SB (median age 66 years, median PSA 6.7 ng/mL). The study defined CSPCa as GS \geq 7 or maximum cancer core length \geq 5 mm. CSPCa was detected in 38% of men receiving MPMRI (±TB) and in 26% in the TRUS-SB group in the Kasivisvanathan study (p=0.005), and 44% (MPMRI [±TB]) and 18% (TRUS-SB) in the Porpiglia study (p<0.001). The overall risk difference (RD) for CSPCa detection when combining the two studies was 0.18 (95% CI, 0.05 to 0.32, p=0.009) (see Figure 1.1 - as RCT subgroup analysis). CISPCa was detected in 9% of men receiving MPMRI (±TB) and in 22% of those receiving TRUS-SB in the Kasivisvanathan study (p<0.0001), and 7% (MPMRI [±TB]) and 11% (TRUS-SB) in the Porpiglia study (p=NR). The overall RD for CISPCa detection when combining the two studies was -0.09 (95% CI,-0.17 to -0.01, p=0.03) (see Figure 1.2).

Cohort Studies

Table 4-3 and Figures 1.1 and 1.2 show the detection rates from the 16 cohort studies of MPMRI-TB versus TRUS-SB in biopsy-naïve men. Two were intervention arms from RCTs [6,7], nine were prospective cohort studies [1,2,8-14], and five were retrospective cohort studies [20-24]. Ten studies used software fusion-guided targeted biopsy [6-9,11,12,20-23], three used cognitive fusion [10,14,24], one used in-bore [2], one used either cognitive or software [1], and one [13] did not report the MRI technique used (see Table 4-1 for study characteristics and Appendix 8 for subgroup analysis by MPMRI-TB type).

Figure 1.1 shows the individual and overall RDs for CSPCa, with an overall RD for the cohort studies combined of 0.02 (95% CI, -0.01 to 0.0=5, p=0.23). Figure 1.2 shows the individual and overall RDs for CISPCa, with an overall RD for the cohort studies combined of -0.08 (95% CI, -0.11 to -0.05, p<0.00001).

Among the 16 cohort studies noted above, two [1,2] were prospective MCTs. A prospective 16-centre, paired diagnostic study (MRI-FIRST) enrolled 251 patients referred for prostate MPMRI. Patients received both TRUS-SB and either cognitive (6 centres) or MRI-TRUS fusion (10 centres) targeted biopsy (for MPMRI-positive patients only). There were no significant differences in detection of CSPCa (TB 32% vs. TRUS-SB 30%; RD 0.02 [95% CI,-0.06 to 0.10]; p=0.38). However, targeted biopsy detected significantly less CISPCa than TRUS-SB (TB 6% vs. TRUS-SB 20%; RD -0.14 [95% CI, -0.20 to -0.08]; p<0.00001). Five percent of CSPCa was detected by TRUS-SB that was missed by MPMRI (\pm TB) and 8% was detected by targeted biopsy and missed by TRUS-SB. The authors concluded that "detection was improved by combining both techniques and both techniques showed substantial added value [1]". A prospective four-

centre, powered, comparative effectiveness study enrolled 646 men to receive MPMRI followed by TRUS-SB and in-bore targeted biopsy (for MPMRI-positive patients only). MPMRI-*TB* detected CSPCa in 26% of patients and TRUS-SB detected 23% (RD 0.02 [95% CI, -0.03 to 0.07]; p=0.3924). CISPCa was detected in 14% of patients by MPMRI-TB and in 25% of patients by TRUS-SB (RD - 0.11 [95% CI, -0.15 to -0.06]; p<0.00001). The MRI pathway (TB for PI-RAD 3-5 lesions) enabled biopsy avoidance in 49% of patients and no targeted biopsy in this group's resulted in missing 3% of cases. Meanwhile, TRUS-SB would have over-detected CISPCa in 20% of these patients, according to the authors [2].

RCTs								
	MRI Navigation system		CSPCa/CISPC	PC CSPCa MPMRI-TB vs.TRUS-SB				
Study (n)	/+MRI definition	Cores	a definition	MPMRI-TB DR	(95% CI)	TRUS-SB	DR (95% CI)	p value
Kasivisvanathan , 2018 (n=500)	Visual registration or software fusion (≥ 3 of 5 scores) (TR or	TB: Max. 3 areas with max. 4 biopsy	CSPCa: (GS≥3+4)	37.7% (32,44) 9	95/252	25.8% (20- 64/248	31)	0.005
	TP)	cores obtained per areas <u>SB:</u> 12	CISPCa: (GS=3+3)	9.1% (6,13) 23/252		22.2% (17, 55/248	27)	0.001
Porpiglia, 2017 (n=212)	Software fusion (≥ 3 of 5 score) TP or TR	<u>TB:</u> 3 to 6 cores from each lesion SB: 12	CSPCa: (GS≥7 or max. CCL≥ 5mm)	43.9% (35,53) 47/107		18.1% (11, 19/105	25)	0001
			CISPCa: (GS=3+3 or max. CCL < 5mm)	6.5% (2,11) 7/107		11.4% (5,1 12/10	8)	0.2113
Cohort Studies								
Charden (m)	MRI Navigation system	Came	CSPCa/CISPC	MPMRI-TB	Missed if TB	TRUS-SB DR (95%	Missed if TRUS-SB	
Alberts, 2018 (n=74) non- randomized arm of RCT	Software fusion (TRUS- Bx_fusion) /1 PI-RAD v1 ≥3 of 5	TB: 2 per lesion SB: grp 1 [PSA≥3.0] sextant TRUS-SB +1 core per bypoechoic lesion:	CSPCa:	DR (95%CI) 18.9% (10,28)	not done 5.4% (1/74)	20.3% (11,29)	not done 6.8% (5/74) MRI- 4/46 MRI+ 1/28	0.8365
		Grp 2 [PSA ≥3.0] 12 core blinded for MRI+1 core for each hypoechoic lesion.	CISPCa: (GS=3+3)	6.8% (1,12)	1.4 (1/74)	33.8% (23,45)	28.4% (21/74) MRI- 17/46 MRI+ 4/28	0.0001
Baco, 2016 (n=86) non-	<u>Software fusion</u> (Image fusion) /PI-RAD v1 ≥3 of 5	TB: Med. 2 (range 1-4)	CSPCa: (GS≥3+4)	38.4% (28,49)	NR	36% (26,46)	NR	0.7532
randomized arm of RCT		<u>TRUS-SB:</u> 12	CISPCa:	NR	NR	NR	NR	NR
Borkowetz, 2017 (n=133)	Software fusion (fusPbx - TP - combined with TR at one site and TR sysPbx at another site)	<u>TB</u> : Min. 2 per lesion TRUS-SB: 12	CSPCa: (GS≥ 7)	40.6% (32,49)	6.8% (9/133)	35.3% (27,43)	2.3% (3/133) MRI- NR MRI+ NR	0.3781

Table 4-3 (Q1b) Studies examining detection rates of MPMRI-TB and TRUS-SB in biopsy-naïve patients by different definitions of clinically significant prostate cancer

	/PI-RAD v1&2 ≥3 of 5		CISPCa: (GS=6)	8.3% (4,13)	NR	6.1% (2,10)	NR	0.4763
Borkowetz, 2018 (n=214)	Software fusion (fusPbx -TP - combined with TR at one site and TR sysPbx at another site)	<u>TB:</u> Min. 2 per lesion <u>TRUS-SB:</u> 12	CSPCa: (GS≥ 7)	37.9% (31,44)	9.3% (20/214)	34.6% (28,41)	6.1% (13/214) MRI- NR MRI+ NR	0.4822
	1&v2 ≥3 of 5		CISPCa: (GS=6)	8.9% (5,13)	6.1% (13/214)	7.9% (4,12)	10.3% (22/214)	0.7280
Castellucci, 2017 (n=168)	fusion (\geq 4 of 5 scores) (n=83), fusion (n=168)	TB: 2 (Mean 2.4 (PI-RAD 3), 2.7 (Pi-	CSPCa: (GS≥3+4)	17.9% (12,24)	NR	19.6% (14,26)	NR	0.6755
	/ PI-RAD v1 ≥4 of 5	RAD 4) <u>TRUS-SB:</u> 12	CISPCa: (GS=3+3)	10.7% (6,15)	NR	16.1% (11,22)	NR	0.1513
Filson, 2016 (n=328)	<u>Software fusion</u> / PI-RAD v.2 ≥3 of 5	TB: 1 core per 3mm of the longest	CSPCa: (GS≥3+4)	30.5% (26,35)	NR	28.7% (23,33)	NR	0.5491
		ROI axi TRUS-SB: 12	CISPCa: (GS=3+3)	13.7% (10,17)	NR	25.6% (21,30)	NR	0.0002
Mannaerts, 2019 (n=294)	Software fusion (MRI-TRUS) / PI-RAD v2 ≥3 of 5	<u>TB</u> : 2 to 4 per lesion depending on lesion size	CSPCa: (GS≥3+4)	32% (27,37)	3.1% (9/294)	39.5% (34,45)	10.5% (31/294) MRI- 24/133 MRI+ 7/161	0.0593
		<u>TRUS-SB:</u> 12	CISPCa: (GS=3+3)	5.4% (3,8)	4.1% (12/294)	15% (11,19)	13.6% (32/294) MRI- 21/133 MRI+ 11/161	0.0002
Mariotti, 2016 (n=246)	Software fusion (MRI-TRUS(/ PI-RAD (NR) ≥3 of 5	TB: 2 or 3 from each target TRUS-SB: 12	CSPCa: 5(GS≥3+4)	45.9% (40,52)	14.2% (35/246)	34.1% (28,40)	2.4% (6/246) MRI-5/113 MRI+1/133	0.0081
			CISPCa: (GS=3+3)	8.1% (5,12)	4.1% (10/246)	24% (19,29)	13.8% (34/246) MRI- 24/113 MRI+ 10/133	0.0000
Meng, 2016 (n=292)	<u>Software fusion</u> MRI-US fusion / PI-RAD (NR) ≥3 of	TB: 4 per lesion TRUS-SB: 12	CSPCa: (GS≥7)	30.5% (25,36)	NR	25.3% (20,30)	NR	0.1675
			CISPCa: (GS=6)	11% (7,15)	NR	20.5% (16,25)	NR	0.0016
Preiser, 2019 (n=141)	MRI/ultrasound <u>software</u> <u>fusion</u> -guided TB	TB: NR TRUS-SB: 12	CSPCa: (GS≥3+4)	51.8% (43,60)	NR	53.9% (45,62)	NR	0.7188
	/ PI-RAD v.2 ≥3 of 5		CISPCa: (GS=3+3)	13.5% (8,20)	NR	13.5% (8,20)	NR	1
Rouviere, 2019 (n=251)	TR <u>cognitive or software</u> fused MRI-TBx /PI-RAD v2	206 (198 + 8 from PI-RAD 2)	CSPCa: (csPCa-A (GG ≥2)	32.3% (26,38)	7.6% (19/251)	29.9% (24,36)	5.2% (13/251) MRI- 5/45 MRI+ 8/206	0.225

	≥ 3 of 5	TB: 3 to 6 per lesion depending on Likert score TRUS-SB: 12 to 14	CISPCa: (ISUP GRADE group 1)	9.2% (6,13)	3.5% (9/251)	22.3% (17,28)	16.3% 42/251 MRI- 8/45 MRI+ 34/206	0.0000
Sakar, 2019 (N=100)	<u>NR</u> <u>/PI-RAD v2</u> ≥ 4 of 5	TB: Med. 6 cores from ave of 2	CISPCa: (GS > 3 + 3)	47% (37,57)	NR	39% (29,49)	NR	0.2543
		lesions SB: 8	CISPCa: (GS=3+3)	7% (3,14)	NR	16% (9,25)	NR	0.0466
Van der Leest, 2019 (n=626)	TR in-bore / PI-RAD v2	TB: 2 to 4 per lesion	CSPCa: (G ≥ 2 [GS ≥ 3+4])	25.4% (22,29)	NR	23.3% (20,27)	NR	0.3924
	≥3 of 5	TRUS-SB: 12	CISPCa: (not defined)	14.1% (11,17)	NR	24.8% (21,28)	NR	0.0000
Westoff, 2019 (n=307)	<u>Software fusion</u> / PI-RAD v2	TB: Med. 2 (IQR 2- 3)	CSPCa: (GS≥3+4)	37.5% (32,43)	NR	39.4% (34,45)	NR	0.6171
	≥3 of 5	SB: 12	CISPCa: (GS=3+3)	19.2% (15,24)	NR	26.7% (22,32)	NR	0.0271
Zalesky, 2019 (n=211)	<u>Software fusion</u> / PI-RAD v2	TB: mean 2.21 cores per lesion	CSPCa: (GS≥7)	30.3% (24,37)	NR	39.8% (33,47)	NR	0.0414
	≥3 of 5	SB: NR	CISPCa: (GS=6)	4.7% (2,9)	NR	13.2% (9,19)	NR	0.0022
Zhang, 2017 (n=224)	<u>Cognitive fusion (free hand TP</u> MPMRI/TRUS)	TB: mean 3.5 (± 1.84)	CSPCa: (GS≥7)	26.3% (21,32)	NR	15.6% (10,20)	NR	0.0058
	/PI-RAD v1 ≥2 of 5	TRUS-SB: 12	CISPCa: (GS=6)	17.9% (13,23)	NR	19.2% (14,24)	NR	0.7156
*using the 2014 Inte	rnational Society of Urologic Pathology	$(ISUP)$ criteria. $C\overline{CL} = c\overline{a}$	ancer core length; CI	= confidence intentions = fusion biopsy:	erval; CSD = c	linical significa GS = Gleason S	nt disease; CISPCa =	clinically to treat: MC

insignificant prostate cancer; CSPCa = clinically significant prostate cancer; DR = detection rate; fusPbx = fusion biopsy; grp = group; GS = Gleason Score; ITT = intention to treat; MC = multi-centre; MCCL = maximum cancer core length; MPMRI = multiparametric magnetic resonance imaging; MRI = magnetic resonance imaging; NR = not reported; PI-RAD = Prostate Imaging-Reporting and Data System; PP= per protocol; pt = patient; PSA = prostate-specific antigen; RCT = randomized controlled trial; ROI = region of interest; SB = systematic biopsy; SC = single centre; TRUS-SB = transrectal ultrasound-guided systematic biopsy; TB = targeted biopsy; TR = transrectal; TP = transperineal

Guideline 27-2 Version 2

	MPMRI-TB		TRUS-SB		Risk Difference		Risk Difference			
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% Cl	M-H, Random, 95% Cl			
1.1.1 Cohort Studies										
Alberts, 2017	14	74	15	74	4.0%	-0.01 [-0.14, 0.11]	+			
Baco, 2016	33	86	31	86	3.5%	0.02 [-0.12, 0.17]	-			
Borkowetz, 2017	54	133	47	133	4.5%	0.05 [-0.06, 0.17]	_ +•			
Borkowetz, 2018	81	214	74	214	5.6%	0.03 [-0.06, 0.12]	- - -			
Castellucci, 2017	30	168	33	168	6.0%	-0.02 [-0.10, 0.07]				
Filson, 2016	100	328	93	328	6.7%	0.02 [-0.05, 0.09]				
Mannaerts, 2019	94	294	116	294	6.3%	-0.07 [-0.15, 0.00]				
Mariotti, 2016	113	246	84	246	5.9%	0.12 [0.03, 0.20]				
Meng, 2016	89	292	74	292	6.5%	0.05 [-0.02, 0.12]	+			
Preisser, 2019	73	141	76	141	4.5%	-0.02 [-0.14, 0.10]				
Rouviere, 2019	81	251	75	251	6.1%	0.02 [-0.06, 0.10]				
Sakar, 2019	47	100	39	100	3.7%	0.08 [-0.06, 0.22]	_ 			
Van der Leest, 2019	159	626	146	626	7.9%	0.02 [-0.03, 0.07]	+			
Westoff, 2019	115	307	121	307	6.3%	-0.02 [-0.10, 0.06]				
Zalesky, 2019	64	211	84	211	5.6%	-0.09 [-0.19, -0.00]				
Zhang, 2017	59	224	35	224	6.4%	0.11 [0.03, 0.18]	[-•			
Subtotal (95% CI)		3695		3695	89.5%	0.02 [-0.01, 0.05]	•			
Total events	1206		1143							
Heterogeneity: Tau ^z = 0.00; Chi ^z = 26.55, df = 15 (P = 0.03); i ^z = 44%										
Test for overall effect: Z = 1.21 (P = 0.23)										
1.1.2 RCTs										
Kasivisvanathan, 2018	95	252	64	248	6.1%	0.12 [0.04, 0.20]				
Porpiglia, 2017	47	107	19	105	4.3%	0.26 [0.14, 0.38]				
Subtotal (95% CI)		359		353	10.5%	0.18 [0.05, 0.32]	-			
Total events	142		83							
Heterogeneity: Tau ² = 0.01; Chi ² = 3.59, df = 1 (P = 0.06); l ² = 72%										
Test for overall effect: Z = 2.62 (P = 0.009)										
T-4-1 (05%) OD					100.00	0.0010.00.0.071				
Total (95% CI)		4054		4048	100.0%	0.03 [0.00, 0.07]	▼			
Total events	1348		1226							
Heterogeneity: Tau ² = 0.00; Chi ² = 46.43, df = 17 (P = 0.0001); l ² = 63%										
Test for overall effect: Z = 1.97 (P = 0.05) Favours [MPMRI-TB]										
Test for subgroup differences: Chi ² = 5.33. df = 1 (P = 0.02), I ² = 81.2%										

Figure 1.1: (MPMRI-TB vs. TRUS-SB) Risk differences in detection of <u>clinically significant</u> prostate cancer for biopsy-

	MPMRI-TB		TRUS-SB		Risk Difference		Risk Difference				
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% Cl	M-H, Random, 95% Cl				
1.2.1 Cohort Studies											
Alberts, 2017	5	74	25	74	3.4%	-0.27 [-0.39, -0.15]					
Borkowetz, 2017	11	133	8	133	6.1%	0.02 [-0.04, 0.08]					
Borkowetz, 2018	19	214	17	214	6.7%	0.01 [-0.04, 0.06]	+				
Castellucci, 2017	18	168	27	168	5.5%	-0.05 [-0.13, 0.02]					
Filson, 2016	45	328	84	328	6.2%	-0.12 [-0.18, -0.06]					
Mannaerts, 2019	16	294	44	294	6.9%	-0.10 [-0.14, -0.05]	-				
Mariotti, 2016	20	246	59	246	6.1%	-0.16 [-0.22, -0.10]					
Meng, 2016	32	292	60	292	6.3%	-0.10 [-0.15, -0.04]					
Preisser, 2019	19	141	19	141	5.2%	0.00 [-0.08, 0.08]	-+-				
Rouviere, 2019	23	251	56	251	6.1%	-0.13 [-0.19, -0.07]					
Sakar, 2019	7	100	16	100	4.8%	-0.09 [-0.18, -0.00]					
Van der Leest, 2019	88	626	155	626	7.2%	-0.11 [-0.15, -0.06]	+				
Westoff, 2019	59	307	82	307	5.9%	-0.07 [-0.14, -0.01]					
Zalesky, 2019	10	211	28	211	6.6%	-0.09 [-0.14, -0.03]	-				
Zhang, 2017	40	224	43	224	5.6%	-0.01 [-0.09, 0.06]					
Subtotal (95% CI)		3609		3609	88.6%	-0.08 [-0.11, -0.05]	◆				
Total events	412		723								
Heterogeneity: Tau ² = 0.0	0; Chi ^z =	51.90, (df = 14 (P	< 0.00	001); I ² =	73%					
Test for overall effect: Z =	4.98 (P <	0.0000	01)								
1.2.2 RCTs											
Kasivisvanathan, 2018	23	252	55	248	6.1%	-0.13 [-0.19, -0.07]					
Porpiglia, 2017	7	107	12	105	5.3%	-0.05 [-0.13, 0.03]					
Subtotal (95% CI)		359		353	11.4%	-0.09 [-0.17, -0.01]	◆				
Total events	30		67								
Heterogeneity: Tau ² = 0.00; Chi ² = 2.72, df = 1 (P = 0.10); l ² = 63%											
Test for overall effect: Z = 2.23 (P = 0.03)											
Total (95% CI)		3968		3962	100.0 %	-0.08 [-0.11, -0.05]	◆				
Total events	442		790								
Heterogeneity: Tau ² = 0.00; Chi ² = 55.13, df = 16 (P < 0.00001); l ² = 71%											
Test for overall effect: Z = 5.54 (P < 0.00001)											
Test for subaroup differences: Chi ² = 0.08, df = 1 (P = 0.77), l ² = 0%											

Figure 1.2: (<u>MPMRI-TB vs. TRUS-SB</u>) Risk differences in detection of <u>clinically insignificant</u> prostate cancer for biopsy-naïve men

Q1c MPMRI-TB plus TRUS-SB vs. MPMRI-TB alone or TRUS-SB alone

Risk of bias assessment for individual studies

Thirteen studies (1 RCT, 12 cohort) compared MPMRI-TB (+TRUS-SB) to either MPMRI-TB alone or TRUS-SB alone. Appendix 5b shows the risk of bias assessment using the Cochrane Risk of Bias tool [60] for the one RCT included for these comparisons. The RCT [25] was assessed at low risk of bias on random sequence generation and whether participant group allocation was concealed. Blinding of participants and direct personnel was not possible in these types of studies and would not likely influence diagnostic outcomes and, thus, was not assessed. The RCT was rated at unclear risk of bias on whether outcome assessor blinding was implemented and whether outcome data reporting was complete. The RCT was rated at low risk of bias in the area of selective reporting.

Appendix 5c shows the risk of bias outcomes for 12 cohort studies using the ROBINS-I tool [61]. All studies were rated at low risk of bias for confounding. Three studies were assessed at high risk of bias for selection of participants, due to their retrospective nature or non-consecutive patient selection [22-24]. Two studies [8,13] were assessed at moderate risk on this domain and the remaining were rated as low. Two studies [1,2] were assessed at low risk of bias on the domain of measurement of intervention and one [13] was assessed as unclear. The remaining studies were assessed as being at moderate risk of bias on measurement of
intervention mainly due to different versions of PI-RAD being used during the study period or lack of clarity regarding measurement. Three studies [8,9,13] were assessed as being at moderate risk of bias for departure from intervention due to lack of clarity of how the intervention was implemented during the study period. The remaining studies were rated as low on this domain. All studies were rated at low risk of bias on the domain of missing data. All studies were assessed as being at moderate risk of bias on measurement of outcome either because it was unclear whether the outcome assessor was blinded to the index test when measuring the reference standard or because no reference standard was used to assess the accuracy of both the MPMRI and TRUS-SB detection. Three of the studies were rated at moderate risk of bias on the domain of selection of reported results [8,9,22]. The remaining studies were rated low on this domain. Overall, two of the cohort studies were assessed as being at low risk of bias [1,2], three were assessed at high risk [22-24] and the remaining were assessed at moderate risk of bias (see Appendix 5).

Confidence intervals were narrow and fell generally in the same direction of effect (Figures 2.1 and 2.2) favouring MPMRI-TB plus TRUS-SB for CSPCa and favouring targeted biopsy alone for CISPCa for studies examining MPMRI-TB plus TRUS-SB versus targeted biopsy alone. Heterogeneity was low for both CSPCa and CISPCa (I²=0% for both). There were no differences between MPMRI-TB subgroups found for CSPCa and CISPCa (Appendix 8, Figures 2.1 and 2.2).

Confidence intervals were narrow and fell generally in the same direction of effect (Figures 3.1 and 3.2) favouring MPMRI-TB plus TRUS-SB for studies examining MPMRI-TB plus TRUS-SB versus TRUS-SB alone (see Figures 3.1 and 3.2). Heterogeneity was low for both CSPCa and CISPCa ($I^2=0\%$ for both) and no significant subgroup difference were detected between cohort and RCTs ($I^2=0\%$). Subgroup differences by type of MPMRI-TB used showed no significant difference (see Appendix 8, Figures 3.1 and 3.2).

The aggregate study evidence certainty for the comparisons was moderate to low after considering the other four factors (inconsistency, indirectness, imprecision, and publication bias) together from the GRADE approach (traditional GRADE summary tables not presented) [15].

Outcomes (MPMRI-TB plus TRUS-SB vs. MPMRI-TB alone or TRUS-SB alone)

Table 4-4 shows reported detection rates for studies examining MPMRI-TB plus TRUS-SB versus MPMRI-TB alone and TRUS-SB alone in biopsy-naive patients. Seven studies used software fusion-guided targeted biopsy[7-9,11,22,23,25], three used cognitive fusion [10,14,24], one used in-bore [2], one used either cognitive or software [1], and one did not report the MPMRI-TB technique used [13] (see Appendix 8 for subgroup analysis by type of MPMRI-TB).

TB+TRUS-SB vs. TB.

Figures 2.1 and 2.2 show the overall RD for the studies (including the non-randomized intervention arm of an RCT [25]) comparing MPMRI-TB plus TRUS-SB to targeted biopsy alone, with 0.06 (95% CI, 0.04 to 0.08, p<0.00001 - Figure 2.1) for CSPCa detection and 0.08 (95% CI, 0.06 to 0.10, p<0.00001 - Figure 2.2) for the detection of CISPCa.

TB+TRUS-SB vs. TRUS-SB.

Figures 3.1 and 3.2 show the overall RD for the studies (including one RCT [25] comparing MPMRI-TB plus TRUS-SB to TRUS-SB alone), with 0.08 (95% CI, 0.05 to 0.10, p<0.00001 - Figure 3.1) for CSPCa detection and 0.00 (95% CI, -0.02 to 0.03, p=0.73 - Figure 3.2) for the detection of CISPCa.

Table 4-4. (Q1c) Studies examining detection rates of MPMRI-TB plus TRUS-SB combined and targeted biopsy and TRUS-SB alone in biopsy-naive patients by different definitions of clinically significant cancer

RCT								
			TB+TRUS-SB	vs.TB alone		TB+TRUS-SB v	s. TRUS-SB alor	<u>1e</u>
Study (n)	MRI Navigation system (positive MRI definition) / cores	CSPCa/CISPCa Definition	TB+TRUS- SB detection rate (95% CI)*	TB alone detection rate (95% CI)	p-value	TB+TRUS-SB detection rate (95% CI)*	TRUS-SB detection rate (95% CI)	p-value
Tontilla, 2016 (n=130)	MRI-TRUS fusion (≥3 of 5 scores)	GS >3+3, > 2 positive cores, or MCCL ≥ 3mm	54.7% (41,68) 29/53	NR	NR	54.7% (41,68) 29/53	45% (32,58) 27/60	0.30
		$GS = 3+3, \le 2$ positive cores, or MCCL < 3mm	9.4% (3,21) 5/53	NR	NR	9.4% (3,21) 5/53	12% (5,23) 7/60	0.70
Cohort Studies								
			TB+TRUS-SB vs	.TB alone		TB+TRUS-SB vs.	TRUS-SB alone	
Study (n)	MRI Navigation system (positive MRI definition)	CSPCa/CISPCa	TB+TRUS-SB detection rate (95%	TB alone detection rate (95% CI)	n-value	TB+TRUS-SB detection rate (95% CI)*	TRUS-SB detection rate (95% CI)	n-value
Baco, 2016 (n=86) SC	Software fusion (Image)	CSPCa: GS≥3+4	44.2% (34,55)	38.4% (28,49)	0.4409	44.2% (34,55)	36% (26,46)	0.2792
non-randomized arm of RCT	(PI-RAD v1 ≥ 3 of 5) / Med. 2 (range 1-4)	CISPCa:	NR	NR	NR	NR	NR	NR
Borkowetz, 2017 (n=133)	Software fusion (fusPbx -	CSPCa: GS≥7	44.4% (36,53)	40.6% (32,49)	0.5362	44.4% (36,53)	35.3% (27,43)	0.1353
	scores) (TP - combined with TR at one site and TR sysPbx at another site) (PI-RAD v1&2 ≥2 of 5) /Min. 2 per lesion	CISPCa: GS=6	NR	NR	NR	NR	NR	NR
Borkowetz, 2018 (n=214)	Software fusion (fusPbx TP -	CSPCa: GS≥7	43.9% (37,51)	37.9% (31,44)	0.2030	43.9% (37,51)	34.6% (28,41)	0.0490
	combined with TR at one site and TR sysPbx at another site) (PI-RAD v1&2 ≥2 of 5) /Min. 2 per lesion	CISPCa: GS=6	14% (9,19)	8.9% (5,13)	0.0964	14% (9,19)	7.9% (0,12)	0.0457
Castellucci, 2017 (n=168)	Cognitive fusion (≥2 of 5)	CSPCa: GS≥3+4	24.4% (18,31)	17.9% (12,24)	0.1434	24.4% (18,31)	19.6% (14,26)	0.2938
	(n=83), software fusion (n=168) (PI-RAD v1 ≥ 3 of 5) /2 (Mean 2.4 (PI-RAD 3), 2.7 (Pi-RAD 4)	CISPCa: GS=3+3	16.7% (11,22)	10.7% (6,15)	0.1144	16.7% (11,22)	16.1% (11,22)	0.8830
Filson, 2016 (n=328)	Software fusion (PI-RAD v2 \geq 3 of 5)	CSPCa: GS≥3+4	37.5% (32,43)	30.5% (26,35)	0.0589	37.5% (32,43)	28.7 % (23,33)	0.0132

	/1 core per 3mm of the longest ROI axi	CISPCa: GS=3+3	21.6% (17,26)	13.7% (10,17)	0.0082	21.6% (17,26)	25.6% (21,30)	0.2330		
Preiser, 2019 (n=141)	MRI/ultrasound software	CSPCa: GS≥3+4	59.6% (51,68)	51.8% (43,60)	0.1868	59.6% (51,68)	53.9% (45,62)	0.3371		
	<u>fusion</u> -guided TB / PI-RAD v.2 ≥3 of 5	CISPCa: GS=3+3	NR	NR	NR	NR	NR	NR		
Rouviere, 2019 (n=251)	TR <u>cognitive or software</u> fused MRI-TBx (PI-RAD $v2 \ge 3$ of 5)	CSPCa: csPCa-A (GG ≥ 2 tumours)	37.5% (31,43)	32.3% (26,38)	0.2245	37.5% (31,43)	29.9% (24,36)	0.0739		
	/3 to 6 per lesion depending on Likert score	CISPCa: ncsPCa (ISUP grade group 1 tumours with a MCCL <6mm)	23.5% (18,29)	9.2% (6,13)	<0.0000	23.5% (18,29)	22.3% (17,28)	0.7490		
Sakar, 2019	NR	CISPCa: GS>3+3	51% (41,61)	47% (37,57)	0.5687	51% (41,61)	39/100	0.08726		
(N=100)	<u>/PI-RAD v2</u> ≥ 4 of 5	CISPCa: GS=3+3	16% (9,25)	7% (3,14)	0.0466	16% (9,25)	16% (9,25)	1		
Tonttila, 2016 (n=53) non-	Software fusion (MRI-TRUS)	CSPCa: GS≥ 3+4	54.7% (41,68)	41.5% (28,55)	0.1795	54.7% (41,68)	35.8% (23,49)	0.0564		
randomized arm of RCT	(PI-RAD (NR) ≥3 of 5) /Max. 2 lesions of any MRI score or size	CISPCa: GS=3+3	22.6% (11,34)	9.4% (2,17)	0.0696	22.6% (11,34)	15.1% (5,25)	0.3253		
Van der Leest, 2019 (n=626)	TR <u>in-bore</u> (PI-RAD v2 \geq 3 of 5)	CSPCa: GS≥2 GS≥3+4	30.4% (27,34)	25.4% (22,29)	0.0512	30.4% (27,34)	23.3% (20,27)	0.0052		
	/2 to 4 per lesion	CISPCa: G≥2 GS≥3+4	23% (20,26)	14.1% (11,17)	0.0001	23% (20,26)	24.8% (21,28)	0.4662		
Westoff, 2019 (n=307)	Software fusion	CSPCa: GS≥3+4	46% (41,52)	37.5% (32,43)	0.0271	46% (41,52)	39.4% (34,45)	0.08726		
	/ PI-RAD v2 ≥3 of 5	CISPCa: GS=3+3	25% (21,31)	19% (15,24)	0.0658	25% (21,31)	26.7% (22,32)	0.71138		
Zalesky, 2019 (n=211)	Software fusion	CSPCa: GS≥7	40.3% (34,47)	30.3% (24,37)	0.0324	40.3% (34,47)	39.8% (33,47)	0.9203		
	/ PI-RAD VZ ≥3 of 5	CISPCa: GS=6	13.3% (9,19)	4.7% (2,09)	0.0222	13.3% (9,19)	11.8% (8,17)	0.6599		
Zhang, 2017 (n=224)	Cognitive fusion (free hand TP	CSPCa: GS ≥ 7	28.1% (22,34)	26.3% (21,32)	0.6716	28.1% (22,34)	15.6% (10,20)	0.0016		
	MPMRI/TRUS) (PI-RAD v1 ≥ 2of 5) / mean 3.5 (± 1.84)	CISPCa: GS = 6	22.3% (17,28)	17.9% (13,23)	0.4157	22.3% (17,28)	19.2% (14,24)	0.4157		
Abbreviations: CI = confidence interval; CSD = clinically significant disease; CSPCa = clinically significant prostate cancer; CISPCa = clinically insignificant prostate cancer; GS = Gleason Score; ITT = intention to treat; MCCL = maximum cancer core length; MPMRI = multiparametric magnetic resonance imaging; MRI = magnetic resonance imaging; NR = not reported; PI-RAD = Prostate Imaging-Reporting and Data System; PP = per protocol; pt = patient; RCT = randomized										

controlled trial; RD = risk difference; TB = target biopsy; TP = transperineal; TR = transrectal; TRUS-SB = transrectal ultrasound-guided systematic biopsy.

	MPMRI-TI	3+SB	TB alo	ne		Risk Difference	Risk Difference
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% Cl	M-H, Random, 95% Cl
2.1.1 Cohort studies							
Baco, 2016	38	86	33	86	2.7%	0.06 [-0.09, 0.21]	
Borkowetz, 2017	59	133	54	133	4.2%	0.04 [-0.08, 0.16]	_
Borkowetz, 2018	94	214	81	214	6.8%	0.06 [-0.03, 0.15]	+
Castellucci, 2017	41	168	30	168	7.8%	0.07 [-0.02, 0.15]	
Filson, 2016	123	328	100	328	11.3%	0.07 [-0.00, 0.14]	
Preisser, 2019	84	141	73	141	4.4%	0.08 [-0.04, 0.19]	
Rouviere, 2019	94	251	81	251	8.5%	0.05 [-0.03, 0.14]	+
Sakar, 2019	51	100	47	100	3.1%	0.04 [-0.10, 0.18]	
Tonttila, 2016	29	53	22	53	1.7%	0.13 [-0.06, 0.32]	
Van der Leest, 2019	190	626	159	626	24.0%	0.05 [-0.00, 0.10]	-
Westoff, 2019	142	307	115	307	9.8%	0.09 [0.01, 0.17]	
Zalesky, 2019	85	211	64	211	7.2%	0.10 [0.01, 0.19]	
Zhang, 2017	63	224	59	224	8.7%	0.02 [-0.06, 0.10]	
Subtotal (95% CI)		2842		2842	100.0%	0.06 [0.04, 0.08]	•
Total events	1093		918				
Heterogeneity: Tau ² = I	0.00; Chi =	3.40, d	f=12 (P:	= 0.99)	I²=0%		
Test for overall effect: 2	Z = 4.90 (P ·	< 0.000	01)				
Total (95% CI)		2842		2842	100.0%	0.06 [0.04, 0.08]	•
Total events	1093		918				
Heterogeneity: Tau ² = I	0.00; Chi ² =	3.40, d	f=12 (P	= 0.99)	l² = 0%		
Test for overall effect: 2	Z = 4.90 (P ·	< 0.000	01)				Favours ITB alone] Favours [MPMRI-TB+SB]
Test for subaroup diffe	rences: No	t annlic	ahle				· ····································

Figure 2.1: (MPMRI-TB+ TRUS-SB vs. MPMRI-TB) Risk differences in detection of <u>clinically significant</u> prostate cancer for biopsy-naïve men

	MPMRI-T	B+SB	TB alo	ne		Risk Difference	Risk Difference
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% Cl	M-H, Random, 95% Cl
2.2.1 Cohort studies							
Borkowetz, 2018	30	214	19	214	11.1%	0.05 [-0.01, 0.11]	
Castellucci, 2017	28	168	18	168	7.5%	0.06 [-0.01, 0.13]	
Filson, 2016	71	328	45	328	11.9%	0.08 [0.02, 0.14]	
Rouviere, 2019	59	251	23	251	10.0%	0.14 [0.08, 0.21]	-
Sakar, 2019	16	100	7	100	5.2%	0.09 [0.00, 0.18]	
Tonttila, 2016	12	53	5	53	2.1%	0.13 [-0.01, 0.27]	
Van der Leest, 2019	144	626	88	626	21.9%	0.09 [0.05, 0.13]	+
Westoff, 2019	78	307	59	307	9.3%	0.06 [-0.00, 0.13]	
Zalesky, 2019	28	211	10	211	13.7%	0.09 [0.03, 0.14]	
Zhang, 2017	50	224	40	224	7.3%	0.04 [-0.03, 0.12]	
Subtotal (95% CI)		2482		2482	100.0%	0.08 [0.06, 0.10]	•
Total events	516		314				
Heterogeneity: Tau ² = I	0.00; Chi ² =	: 6.98, d	f=9(P=	0.64);1	≈ =0%		
Test for overall effect: 2	(P) 00.8 = 2	< 0.0000	01)				
Total (95% CI)		2482		2482	100.0%	0.08 [0.06, 0.10]	•
Total events	516		314				
Heterogeneity: Tau ² = I	0.00; Chi ² =	: 6.98, d	f=9(P=	0.64);1	²=0%		
Test for overall effect: 2	Z = 8.00 (P	< 0.0000	01)				Favours (MPMRI-TB+SB) Favours (TB alone)
Test for subaroun diffe	rences: No	t annlic:	ahle				rateare (in and the ed) if arears (the arears)

Figure 2.2: (<u>MPMRI-TB+ TRUS-SB vs. MPMRI-TB</u>) Risk differences in detection of <u>clinically insignificant</u> prostate cancer for biopsy-naïve men

	MPMRI-T	B+SB	SB alo	ne		Risk Difference	Risk Difference
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% Cl	M-H, Random, 95% Cl
3.1.1 Cohort Studies							
Baco, 2016	38	86	31	86	2.7%	0.08 [-0.06, 0.23]	
Borkowetz, 2017	59	133	47	133	4.2%	0.09 [-0.03, 0.21]	
Borkowetz, 2018	94	214	74	214	6.8%	0.09 [0.00, 0.19]	
Castellucci, 2017	41	168	33	168	7.4%	0.05 [-0.04, 0.14]	- +-
Filson, 2016	123	328	93	328	11.2%	0.09 [0.02, 0.16]	
Preisser, 2019	84	141	76	141	4.3%	0.06 [-0.06, 0.17]	- +- -
Rouviere, 2019	94	251	75	251	8.5%	0.08 [-0.01, 0.16]	
Sakar, 2019	51	100	39	100	3.1%	0.12 [-0.02, 0.26]	
Van der Leest, 2019	190	626	146	626	24.1%	0.07 [0.02, 0.12]	-
Westoff, 2019	142	307	121	307	9.4%	0.07 [-0.01, 0.15]	
Zalesky, 2019	85	211	84	211	6.6%	0.00 [-0.09, 0.10]	_ + _
Zhang, 2017	63	224	35	224	10.1%	0.13 [0.05, 0.20]	
Subtotal (95% CI)		2789		2789	98.3%	0.08 [0.05, 0.10]	•
Total events	1064		854				
Heterogeneity: Tau ² = (0.00; Chi <mark>²</mark> =	= 5.21, d	f = 11 (P :	= 0.92)	² = 0%		
Test for overall effect: Z	Z = 6.17 (P	< 0.000	01)				
3.1.2 RCT							
Tonttila, 2016	29	53	27	60	1.7%	0.10 [-0.09, 0.28]	
Subtotal (95% CI)		53		60	1.7%	0.10 [-0.09, 0.28]	-
Total events	29		27				
Heterogeneity: Not app	olicable						
Test for overall effect: 2	Z=1.04 (P:	= 0.30)					
		~~					
l otal (95% CI)		2842		2849	100.0%	0.08 [0.05, 0.10]	•
Total events	1093		881				
Heterogeneity: Tau ² = (0.00; Chi ² =	= 5.26, d	f=12 (P	= 0.95)	; I² = 0%		-1 -0.5 0 0.5 1
Test for overall effect: Z	Z = 6.25 (P	< 0.000	01)				Favours (TRUS-SB) Favours (MPMRI-TB+SB)
Test for subaroup diffe	rences: Ch	ni² = 0.03	5. df = 1 (l	P = 0.8:	2). I⁼ = 0%	5	· · · · · · · · · · · · · · · · · · ·

	MPMRI-T	B+SB	SB alo	ne		Risk Difference	Risk Difference
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% Cl	M-H, Random, 95% Cl
3.2.1 Cohort Studies							
Borkowetz, 2018	30	214	17	214	13.5%	0.06 [0.00, 0.12]	
Castellucci, 2017	28	168	27	168	7.5%	0.01 [-0.07, 0.09]	+
Filson, 2016	71	328	84	328	11.1%	-0.04 [-0.10, 0.03]	
Rouviere, 2019	59	251	56	251	8.7%	0.01 [-0.06, 0.09]	+
Sakar, 2019	16	100	16	100	4.6%	0.00 [-0.10, 0.10]	
Van der Leest, 2019	144	626	155	626	21.1%	-0.02 [-0.06, 0.03]	-
Westoff, 2019	78	307	82	307	9.7%	-0.01 [-0.08, 0.06]	
Zalesky, 2019	28	211	25	211	11.8%	0.01 [-0.05, 0.08]	- - -
Zhang, 2017	50	224	43	224	8.3%	0.03 [-0.04, 0.11]	
Subtotal (95% CI)		2429		2429	96.3%	0.00 [-0.02, 0.03]	•
Total events	504		505				
Heterogeneity: Tau ² = (0.00; Chi ² =	= 7.19, d	f= 8 (P =	0.52);1	l²=0%		
Test for overall effect: 2	Z= 0.42 (P	= 0.67)					
3.2.2 RCT							
Tonttila, 2016	5	53	7	60	3.7%	-0.02 [-0.14, 0.09]	
Subtotal (95% CI)		53		60	3.7%	-0.02 [-0.14, 0.09]	-
Total events	5		7				
Heterogeneity: Not app	olicable						
Test for overall effect: 2	Z = 0.39 (P :	= 0.70)					
Total (95% CI)		2482		2489	100.0%	0.00 [-0.02, 0.03]	•
Total events	509		512				
Heterogeneity: Tau² = I	0.00; Chi =	= 7.37, d	f=9(P=	0.60);	l² = 0%		
Test for overall effect: 2	Z= 0.34 (P:	= 0.73)					Favours (MPMRI-TB+SB) Favours (SB alone)
Test for subaroup diffe	rences: Ch	ni z = 0.21	1. df = 1 (P = 0.6	4). I² = 0%	6	

Figure 3.2: (MPMRI-TB+ TRUS-SB vs. TRUS-SB) Risk differences in detection of <u>clinically insignificant</u> prostate cancer for biopsy-naïve men

Previously negative patients (Question 2)

Q2a MPMRI-TB vs. Reference Standard

Risk of bias assessment for individual studies

Seven studies assessed the diagnostic accuracy of MPMRI (±TB) against the reference standard (TTMB). Appendix 5a shows the risk of bias and applicability using the QUADAS-2 tool [4,5]. Three [5,18,67] of the seven studies were assessed as being at low risk of bias on the domain of patient selection and the remaining studies were assessed as unclear. All studies were rated at low risk of bias on the domain of index testing. One study [5] was assessed as being at moderate risk of bias on the reference standard domain mainly due to lack of blinding of the outcome assessors; the remaining were assessed as either unclear [18,19,31] or low [26,32-34] on risk of bias on the domain of flow and timing. All studies were assessed as being at low risk for the applicability concerns regarding patient selection, index testing and the reference standard. One of the seven articles addressing this question was assessed overall at being at unclear [18,31-34] risk of bias. The final study was assessed overall at being at low risk of bias on the guadas-2 tool and five were assessed overall at being at unclear [12,31-34] risk of bias. The final study was assessed overall at being at low risk of bias on the final study was assessed overall at being at low risk of bias.

The sensitivities across the seven studies assessing the diagnostic accuracy of MPMRI (\pm TB) for previously negative patients were somewhat comparable, ranging between 78.2% [34] and 100% [32]. However, specificities varied among the studies, ranging from 39% [18,31] to 100% [32] for MPMRI alone and 30% [26] to 77% [34] for MPMRI-TB (see Table 4-5). The aggregate study evidence certainty for the comparisons was moderate to low after considering the other four factors (inconsistency, indirectness, imprecision, and publication bias) together from the GRADE approach (traditional GRADE summary tables not presented) [15].

Outcomes (MPMRI-TB vs. Reference Standard)

Table 4-5 shows the diagnostic accuracy of MPMRI (\pm TB) compared with a reference standard for the seven cohort studies [4,5,26,31-34] reporting diagnostic accuracy outcomes for MPMRI (\pm TB) in previously negative patients. All but one of the studies [32] had a threshold of \geq 3 of 5 scores. Four studies compared MPMRI alone to a reference standard [18,31-33] and three compared the reference standard to MPMRI followed by software fusion-guided targeted biopsy[5,26,34]. Reported mean/median age ranged from 62 [26,34] to 66 [31] years and PSA ranged from 6.7 ng/mL [5] to 9.7 ng/mL [31] (see Table 4-1).

MPMRI Alone

In the 2016 Hansen et al. study [18] the prevalence of CSPCa among 295 patients was 27%. Using MPMRI alone, the sensitivity and specificity of MPMRI to detect CSPCa was 90% (95% CI, 84 to 110) and 39% (95% CI, 32 to 45), respectively, indicating that 10% of true CSPCa patients were missed and 61% of patients without CSPCa were falsely diagnosed. Among the MPMRI-positive patients, 36% (PPV) of patients had CSPCa; among the MPMRI-negative patients, 9% (NPV=91%) were true CSPCa patients (see Table 4-5).

In the 2017 Hansen et al. study [31] the prevalence of CSPCa among 487 patients was 31%. Using MPMRI alone, the sensitivity and specificity of MPMRI to detect CSPCa was 93% (95% CI, 88 to 97) and 39% (95% CI, 34 to 45), respectively, indicating that 7% of true CSPCa patients were missed and 61% of patients without CSPCa were falsely diagnosed. Among the MPMRI-positive patients, 40% (PPV) of patients had CSPCa; among the MPMRI-negative patients, 8% (NPV=92%) were true CSPCa patients (see Table 4-5).

In the 2015 Pepe et al. study [32] the prevalence of CSPCa among 100 patients was 13%. Using MPMRI alone, the sensitivity and specificity of MPMRI to detect CSPCa was 100% (95% CI, 100 to 100) and 100% (95% CI, 100 to 100), respectively, indicating that 0% of true CSPCa patients were missed and 0% of patients without CSPCa were falsely diagnosed. Among the MPMRI-positive patients, 0% (PPV) of patients had CSPCa; among the MPMRI-negative patients, 0% (NPV=100%) were true CSPCa patients (see Table 4-5).

In the 2018 Pepe et al. study [33] the prevalence of CSPCa among 1032 patients was 26%. Using MPMRI alone, the sensitivity and specificity of MPMRI to detect CSPCa was 84% (95% CI, 79 to 88) and 72% (95% CI, 69 to 76), respectively, indicating that 16% of true CSPCa patients were missed and 28% of patients without CSPCa were falsely diagnosed. Among the MPMRI-positive patients, 52% (PPV) of patients had CSPCa; among the MPMRI-negative patients, 7% (NPV=93%) were true CSPCa patients (see Table 4-5).

MPMRI-TB

In the Mortezavi 2018, et al. study [5] the prevalence of CSPCa among 86 patients was 30%. Using MPMRI plus software fusion TB, the sensitivity and specificity of MPMRI to detect CSPCa was 81% (95% CI, 66 to 96), and 52% (95% CI, 39 to 64), respectively, indicating that 19% of true CSPCa patients were missed and 48% of patients without CSPCa were falsely diagnosed. Among the MPMRI-positive patients, 42% (PPV) had CSPCa; among the MPMRI-negative patients, 14% (NPV=86%) were true CSPCa patients (see Table 4-5).

In the 2017 Pepe et al. study [34] the prevalence of CSPCa among 150 patients was 37%. Using MPMRI plus software fusion TB, the sensitivity and specificity of MPMRI to detect CSPCa was 78% (95% CI, 67 to 89) and 77% (95% CI, 68 to 85), respectively, indicating that 22% of true CSPCa patients were missed and 23% of patients without CSPCa were falsely diagnosed. Among the MPMRI-positive patients, 66% (PPV) of patients had CSPCa; among the MPMRI-negative patients, 14% (NPV=86%) were true CSPCa patients (see Table 4-5).

In the 2017 Simmons et al. study [26] the prevalence of CSPCa among 249 patients was 41%. Using MPMRI plus software fusion TB, the sensitivity and specificity of MPMRI to detect CSPCa was 94% (95% CI, 89 to 97) and 30% (95% CI, 20 to 41), respectively, indicating that 6% of true CSPCa patients were missed and 70% of patients without CSPCa were falsely diagnosed. Among the MPMRI-positive patients, 73% (PPV) of patients had CSPCa; among the MPMRI-negative patients, 31% (NPV=69%) were true CSPCa patients (see Table 4-5).

Study (Prevalence of CSPCa)	Index test	Positive MRI	Reference standard	CSPCa Definition	Sensitivity	Specificity	Positive Predictive Value	Negative Predictive Value
MPMRI Alone								
Hansen, 2016 n=295 (27%)	T2WI+DWI+DCE	PI-RAD v1 ≥3 of 5	24-core TRUS-SB according to the Ginsburg TRUS-SB protocol	GS 7 to 10	90.1% (84,110)	38.8% (32,45)	35.8% (29,42)	91.2% (85,97)
Hansen, 2017 n=487 (31%)	T2WI+DWI+DCE	PI-RAD v1&2 ≥3 of 5	18-24 core TRUS-SB TP according to the Ginsburg TRUS-SB protocol	GS 7 to 10	92.6% (88,97)	39.3% (34,45)	40.2% (35,45)	92.4% (88,97)
Pepe, 2015 n=100 (13%)	T2WI+DWI+ DCE+spectroscopy	PI-RAD v1 ≥4 of 5	TP saturation biopsy	GS ≥7	100% (100,100)	100% (100,100)	100% (100,100)	100% (100,100)
Pepe, 2018 n=1032 (26%)	T2WI+DWI+DCE	PI-RAD v1&2 ≥3 of 5	TP saturation biopsy	GS ≥3+4	83.8% (79,88)	72.4% (69,76)	52.1% (47,57)	92.6% (90,95)
MPMRI-TB								
Mortezavi, 2018 n=86 (30%)	T2WI+ DWI+DCE MPMRI/TRUS fusion guided	PI-RAD (NR) ≥3 of 5	TP TPMB	GS ≥7	80.8% (66,96)	51.7% (39,64)	42% (28,56)	86.1% (75,97)
Pepe, 2017 n=150 (37%)	TRUS/MPMRI TR fusion targeted (<u>software</u>) biopsy (T2WI, DWI, DCE)	PI-RAD v1 ≥3 of 5	TP saturation biopsy	GS ≥3+4	78.2% (67,89)	76.8% (68,85)	66.2% (55,78)	85.9% (78,93)
Simmons, 2017, 2018 n= 249 (41%)	T2WI+DWI+DCE + Image fusion TB	PI-RAD (NR) ≥3 of 5	TP TPMB	GS ≥3 +4 and /or MCCL ≥4 mm	93.5% (89,97)	29.6% (20,41)	73.4% (67,79)	68.6% (51,83)

Table 4-5. Cohort studies examining (Q2a) MPMRI (±TB) in previously negative patients (compared with reference standard) by different definitions of clinically significant cancer

*using the 2014 International Society of Urologic Pathology (ISUP) criteria

CSPCa = clinically significant prostate cancer; DCE = dynamic contrast enhanced-magnetic resonance imaging; DWI = diffusion weighted imaging; GS = Gleason Score; MCCL = maximum cancer core length; MPMRI = multi-parametric magnetic resonance imagine; MRI = magnetic resonance imaging; NR = not reported; PI-RAD = Prostate Imaging Reporting and Data System; TB = targeted biopsy; TP = transperineal; TPMB = template prostate mapping biopsy; TR = transrectal; TRUS-SB = transrectal ultrasoud systematic biopsy; T2WI = T₂-weighted imaging.

Q2b MPMRI-TB vs. TRUS-SB

Risk of bias assessment for individual studies

Fifteen studies compared MPMRI-TB with TRUS-SB. Appendix 5c shows the risk of bias assessments for the studies using the ROBINS-I Tool [61]. All studies were rated at low risk of Four studies were assessed at high risk of bias for selection of bias for confounding. participants, due to their retrospective nature or to non-consecutive patient selection [22-24,65]; two [8,27] were assessed at moderate on this domain and the remaining were rated as low. Four studies [6,27-29] was assessed at low risk of bias on measurement of intervention and one [65] was assessed at being at high risk of bias; the remaining studies were assessed as being at moderate risk of bias on measurement of intervention mainly due to different version of PI-RAD being used during the study period or lack of clarity regarding measurement. Nine studies [6,11,22-24,27-30] were assessed as being at low risk of bias for departure from intervention; the remaining studies were rated as moderate on this domain due to lack of clarity on measurement. Four studies [6,12,65,66] were assessed as being at moderate risk of bias due to missing data and the remainder was assessed as being at low risk of bias on this domain. All studies measuring detection rates were assessed as being at moderate risk of bias on measurement of outcome either because it was unclear whether the outcome assessor was blinded to the index test when measuring the reference standard or because no reference standard was used to assess the accuracy of both the MPMRI and TRUS-SB detection. Three of the studies [8,22,65] were rated at moderate risk of bias on the domain of selection of reported results and the remaining studies were rated low on this domain. Overall, two [28,29] of the studies were assessed at being at low risk of bias and six [21-24,65,66] were assessed at high risk of bias. The remaining studies were assessed at being at moderate risk of bias (see Appendix 5).

The aggregate study evidence certainty for the comparisons was moderate to low after considering the four factors (inconsistency, indirectness, imprecision, and publication bias) together from the GRADE approach (traditional GRADE summary tables not presented) [15].

Outcomes (MPMRI-TB vs. TRUS-SB)

Table 4-6 shows the detection rates of MPMRI-TB versus TRUS-TB for previously negative patients. Fifteen studies with a definition of CSPCa of GG \geq 2 reported detection rates for MPMRI-TB versus TRUS-SB in previously negative men. Two were non-randomized interventions arms from RCTs [6,27]. Twelve studies used software fusion-guided targeted biopsy[6,8,11,12,20-24,27,30,65], one used cognitive fusion [66], and two used either software or cognitive fusion targeted biopsy[28,29] (see Table 4-6).

Estimates for CSPCa for the studies of previously negative patients show an overall effect of 0.05 (95% CI, 0.03 to 0.07, p<0.0001) (Figure 4.1). For CISPCa, the overall effect is -0.07 (95% CI, -0.09 to -0.04, p<0.00001) (Figure 4.2).

Table 4-6. Cohort studies exami	ning (Q2b) detection rate	s of MPMRI-TB and	TRUS-SB in previously	negative patients by
different definitions of clinically	significant cancer			

Study (n)	MRI Navigation system (positive MRI definition)/+MRI definition (n) /-MRI definition (n)	Cores	CSPCa/CISP Ca definition	MRI/TB DR (95% CI)	Missed if not done	TRUS-SB DR (95% CI)	Missed if TRUS-SB not done	p-value
Alberts, 2018 (n=84) non- randomised arm	$\frac{Software fusion}{/PI-RAD \ge 3 of 5}$	TB: 2 per lesion TRUS-SB: 12	CSPCa: (GS≥3+4)	3.6% (0,8)	1.2% (1/84)	4.8% (0,9)	2.4% (2/84) MRI-1/64 MRI+1/20	0.7004
of RCT			CISPCa: (GS=3+3)	7.1% (2,13)	4.8% (4/84)	23.8% (20,40)	21.4% (18/84) MRI-17/64 MRI+1/20	0.0003
Arsov, 2015 (n=104) non- randomised arm	Software fusion (TR or TP) /PI-RAD v1&2 ≥3 of 5	TB: 2 targeted cores from each lesion TRUS-SB: 12	CSPCa: (GS≥3+4)	26% (18,34)	6.7% (7/104)	25% (17,33)	5.8% (6/104) MRI- NR MRI+ NR	0.8124
of RCT			CISPCa: (GS=3+3)	7.7% (3,13)	2.9% (3/104)	9.6% (4,15)	4.8% (5/104) MRI- NR MRI+ NR	0.6545
Boesen, 2018 (n=289)	$\frac{\text{Cognitive fusion}}{\text{software fusion}} (n=289) \\ /\text{PI-RAD v1} \ge 3 \text{ of } 5$	TB: 1-2 per lesion TRUS-SB: 10	CSPCa: (GS≥3+4)	27% (22,32)	10% (29/289)	20.4% (16,25)	3.5% (10/289) MRI- NR MRI+ NR	0.0641
			CISPCa: (GS=3+3)	6.2% (3,9)	2.1% (6/289)	17% (13,21)	12.8% (37/289) MRI- NR MRI+ NR	0.0001
Borkowetz, 2017 (n=445)	Software fusion (fusPbx TP - combined with TR at one site and TR sysPbx at another	TB: min. 2 per lesion TRUS-SB: 12	CSPCa: (GS≥7)	31.2% (27,36)	11.7% (52/445)	23.8% (20,28)	4.3% (19/445) MRI- NR MRI+ NR	0.0136
	site) /PI-RAD v1&2 ≥2 of 5		CISPCa: (GS=6)	8.1% (6,11)	NR	8.1% (6,11)	NR	0.9028
Exterkate, 2020 (n=152)	Software fusion or cognitive fusion or MRI-TB /PI-RAD v1&2 ≥3 of 5	TB: med. 3 (3-4) TRUS-SB: 10 (8-12)	CSPCa: (GS≥3+4)	33.6% (26,41)	19.1% (29/152)	15.8% (11,22)	1.3% (2/152) MRI- NR MRI+ NR	<0.001
			CISPCa: (GS=3+3)	13.2% (9,21)	5.3% (8/152)	16.4% (11,22)	7.9% (12/152) MRI- NR MRI+ NR	0.421
Filson, 2016 (n=324)	$\frac{\text{Software fusion}}{\text{/PI-RAD v2} \ge 3 \text{ of } 5}$	TB: 1 core per 3mm of the longest ROI axi	CSPCa: (GS ≥ 3+4)	18.5% (14,23)	NR	14.8% (11,19)	NR	0.2068
		TRUS-SB: 12	CISPCa: (GS =3+3)	7.1% (4,10)	NR	14.8% (11,19)	NR	0.0018
Lian, 2017 (n=101)	Software fusion /PI-RAD v2, ≥ 3 of 5	TB: at least each one core in axial and sagittal planes TRUS-SB:TB	CSPCa: (GS \geq 3 + 4 or GS 6 with MCCL \geq 4 mm)	21.8% (14,30)	11.9% (12/101)	12.9% (6,19)	3% (3/101) MRI- NR MRI+ NR	0.097
			CISPCa: (G/S < 3 + 4	8.9% (3,14)	5% (5/101)	13.9% (7,21)	9.9% (10/101) MRI- NR	0.271

Section 4: Systematic Review - February 11, 2021

Table 4-6. Cohort studies exami	ning (Q2b) detection ra	ates of MPMRI-TB and	TRUS-SB in previously	negative patients by
different definitions of clinically	significant cancer			

Study (n)	MRI Navigation system (positive MRI definition)/+MRI definition (n) /-MRI definition (n)	Cores	CSPCa/CISP Ca definition	MRI/TB DR (95% CI)	Missed if not done	TRUS-SB DR (95% CI)	Missed if TRUS-SB not done	p-value
			or GS 6 with MCCL ≥ 4 mm)				MRI+ NR	
Mannaerts, 2019 (n=159)	<u>Software fusion</u> (MRI-TRUS fusion) /PI-RAD v2 ≥3 of 5	TB: 2 to 4 per lesion TRUS-SB: 12	CSPCa: (GS≥3+4)	11.9% (7,17)	3.1% (5/159)	14.5% (9,20)	6.9% (11/159) MRI- 5/65 MRI+ 6/94	0.5086
			CISPCa: (GS=3+3)	3.1% (0,6)	1.3% (2/159)	15.1% (10,21)	13.2% (21/159) MRI- 13/65 MRI+ 8/94	0.0003
Mariotti, 2016 (n=143)	<u>Software fusion</u> (MRI-TRUS fusion) /PI-RAD (NR) ≥3 of 5	TB: 2 or 3 from each target TRUS-SB: 12	CSPCa: (GS≥3+4)	22.4% (16,29)	14% (20/143)	12.6% (7,18)	4.2% (6/143) MRI-3/94 MRI+3/49	0.0309
			CISPCa: (GS=3+3)	11.9% (7,17)	5.6% (8/143)	28.7% (21,36)	22.4% (32/143) MRI-21/94 MRI+1149	0.0006
Meng, 2016 (n=172)	Software fusion (MRI-US) /PI-RAD (NR) ≥3 of 5	TB: 4 per lesion TRUS-SB: 12	CSPCa: (GS≥7)	16.3% (11,22)	NR	9.3% (5,14)	NR	0.0544
			CISPCa: (GS=6)	8.1% (4,12)	NR	9.3% (5,14)	NR	0.7028
Preiser, 2019 (n=78)	MRI/ultrasound <u>software</u> <u>fusion</u> -guided TB	TB: NR TRUS-SB: 12	CSPCa: (GS≥3+4)	25/78	NR	24/78	NR	0.8650
	/ PI-RAD v.2 ≥3 of 5		CISPCa: (GS=3+3)	5/78	NR	7/78	NR	0.5485
Say, 2016 (n=143)	Software fusion (MRI-US) /PI-RAD v1 ≥3 of 5	TB: at least one biopsy core taken per target TRUS-SB: 12	CSPCa: (GS ≥ 3+4)	23.1% (16,30)	9.1% (13/143)	18.2% (12,26)	4.2% (6/143) MRI- 0/22 MRI+ 6/121	0.3850
			CISPCa: (GS =3+3)	11.2% (6,16)	7% (10/143)	16.8% (11,23)	12.6% (18/143) MRI- 3 /22 MRI+ /121	0.1748
Sidana, 2018 (n=779)	Cognitive fusion /PI-RAD v2 ≥3 of 5	TB: 4 per lesion TRUS-SB: 12	CSPCa: (GS ≥ 3+4)	26.3% (23,29)	11.8% (92/779)	18.9% (16,22)	4.4% (34/779) MRI- NR MRI+ NR	0.0005
			CISPCa: (GS=3+3)	8.1% (6,10)	4% (31/779)	15.1% (13,18)	11% (86/779) MRI- NR MRI+ NR	0.0000
Westoff, 2019 (n=210)	Software fusion / PI-RAD v2	TB: Med. 2 (IQR 2-3) SB: 12	CSPCa: (GS≥3+4)	31% (25,38)	NR	30.5% (24,37)	NR	0.9124
	≥3 of 5		CISPCa: (GS=3+3)	12.4% (8,18)	NR	20.5% (15,27)	NR	0.0251
Zalesky, 2019 (n=174)	Software fusion / PI-RAD v2	TB: mean 2.21 cores per lesion	CSPCa: (GS≥7)	27% (21,34)	NR	25.3% (19,32)	NR	0.7114

Section 4: Systematic Review - February 11, 2021

Table 4-6. Cohort studies examining (Q2b) detection rates of MPMRI-TB and TRUS-SB in previously negative patients by different definitions of clinically significant cancer

Study (n)	MRI Navigation system (positive MRI definition)/+MRI definition (n) /-MRI definition (n)	Cores	CSPCa/CISP Ca definition	MRI/TB DR (95% CI)	Missed if not done	TRUS-SB DR (95% Cl)	Missed if TRUS-SB not done	p-value
	≥3 of 5	SB: NR	CISPCa: (GS=6)	6.9% (4,12)	NR	13.8% (9,20)	NR	0.0349
*using the 2014 Inter CI = confidence inter Score; MCCL = maxi Imaging Reporting a transperineal; TR =	ernational Society of Urologic Pat erval; CISPCa = clinically insignifi mum cancer core length; MPMRI and Data System; pop. = populati transrectal; TRUS-SB =transrecta	hology (ISUP) criteria cant prostate cancer; CSPCa = multiparametric magnetic on; RCT = randomized contr I ultrasound systematic bioj	a = clinically sig resonance ima olled trial; ROI osy; US = ultras	nificant prostate c aging; MRI = magne = regions of intere ound.	ancer; DR = detect tic resonance imag est; sysPbx = system	ion rate; fusPbx = 1 ing; NR = not repor natic biopsy; TB = t	fusion biopsy; GS = ted; PI-RAD = Prost argeted biopsy; TP	Gleason ate =

	MPMR	-TB	TRUS-	SB		Risk Difference	Risk Difference
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% Cl	M-H, Random, 95% Cl
4.1.1 Cohort studies							
Alberts, 2017	3	84	4	84	9.0%	-0.01 [-0.07, 0.05]	
Arsov, 2015	27	104	26	104	3.5%	0.01 [-0.11, 0.13]	
Boesen, 2018	78	289	59	289	7.7%	0.07 [-0.00, 0.13]	
Borkowetz, 2017	139	445	106	445	9.3%	0.07 [0.02, 0.13]	-
Exterkate, 2020	51	152	24	152	5.0%	0.18 [0.08, 0.27]	
Filson, 2016	60	324	48	324	9.5%	0.04 [-0.02, 0.09]	+
Lian, 2017	22	101	13	101	4.4%	0.09 [-0.01, 0.19]	+
Mannaerts, 2019	19	159	23	159	7.0%	-0.03 [-0.10, 0.05]	
Mariotti, 2016	32	143	18	143	5.7%	0.10 [0.01, 0.19]	
Meng, 2016	28	172	16	172	7.6%	0.07 [-0.00, 0.14]	
Preisser, 2019	25	78	24	78	2.5%	0.01 [-0.13, 0.16]	
Say, 2016	33	143	26	143	5.1%	0.05 [-0.04, 0.14]	+
Sidana, 2018	205	779	147	779	12.7%	0.07 [0.03, 0.12]	+
Westoff, 2019	65	210	64	210	5.6%	0.00 [-0.08, 0.09]	
Zalesky, 2019	47	174	44	174	5.2%	0.02 [-0.08, 0.11]	-
Subtotal (95% CI)		3357		3357	100.0 %	0.05 [0.03, 0.07]	•
Total events	834		642				
Heterogeneity: Tau ² =	0.00; Ch	i² = 21.8	36, df = 1	4 (P = 0	0.08); I ^z = 0	36%	
Test for overall effect:	Z = 4.00	(P < 0.0	1001)				
Total (95% CI)		3357		3357	100.0%	0.05 [0.03, 0.07]	•
Total events	834		642				
Heterogeneity: Tau ² =	0.00; Ch	i [≥] = 21.8	36, df = 1	4 (P = 0	0.08); I ^z = 0	36%	
Test for overall effect:	Z = 4.00 ((P < 0.0	1001)				-1 -0.5 U U.5 1 Eavours [TPLIS SP] Eavours [MPMPLTP]
Test for subaroup diff	erences:	Not ap	olicable				

Figure 4.1: (<u>MPMRI-TB vs. TRUS-SB</u>) Risk differences in detection of <u>clinically significant</u> prostate cancer for previously negative men

	MPMR	-TB	TRUS-	SB	Risk Difference		Risk Difference
Study or Subgroup	Events	Total	Events	Total	Weight M-H, Random, 95% C		M-H, Random, 95% Cl
4.2.1 Cohort studies							
Alberts, 2017	6	84	20	84	3.8%	-0.17 [-0.27, -0.06]	_ -
Arsov, 2015	8	104	10	104	5.8%	-0.02 [-0.10, 0.06]	_
Boesen, 2018	18	289	49	289	8.2%	-0.11 [-0.16, -0.06]	
Borkowetz, 2017	37	445	36	445	9.9%	0.00 [-0.03, 0.04]	+
Exterkate, 2020	20	152	25	152	5.5%	-0.03 [-0.11, 0.05]	
Filson, 2016	23	324	48	324	8.6%	-0.08 [-0.12, -0.03]	-
Lian, 2017	9	101	14	101	4.9%	-0.05 [-0.14, 0.04]	
Mannaerts, 2019	5	159	24	159	7.1%	-0.12 [-0.18, -0.06]	
Mariotti, 2016	17	143	41	143	4.7%	-0.17 [-0.26, -0.08]	- - -
Meng, 2016	14	172	16	172	7.3%	-0.01 [-0.07, 0.05]	-
Preisser, 2019	5	78	7	78	5.2%	-0.03 [-0.11, 0.06]	
Say, 2016	16	143	24	143	5.5%	-0.06 [-0.14, 0.02]	
Sidana, 2018	63	779	118	779	10.4%	-0.07 [-0.10, -0.04]	+
Westoff, 2019	26	210	43	210	6.3%	-0.08 [-0.15, -0.01]	
Zalesky, 2019	12	174	24	174	6.9%	-0.07 [-0.13, -0.01]	
Subtotal (95% CI)		3357		3357	100.0%	-0.07 [-0.09, -0.04]	•
Total events	279		499				
Heterogeneity: Tau ² =	0.00; Ch	i ^z = 34.1	11, df = 1	4 (P = 0).002); I ^z =	= 59%	
Test for overall effect:	Z = 5.15	(P < 0.0	10001)				
Total (95% CI)		3357		3357	100.0%	-0.07 [-0.09, -0.04]	•
Total events	279		499				
Heterogeneity: Tau ² =	0.00; Ch	i² = 34.1	11, df = 1	4 (P = 0).002); I ^z =	= 59%	
Test for overall effect:	Z = 5.15	(P < 0.0	0001)				Eavours [MPMRI-TB] Eavours [TRUS-SB]
Test for subaroup diff	erences:	Not an	olicable				

Q2c - MPMRI-TB vs. MPMRI-TB alone or TRUS-SB alone

Risk of bias assessment for individual studies

Nine cohort studies compared MPMRI-TB with TRUS-SB. Appendix 5c shows the risk of bias assessments for the studies using the ROBINS-I tool [61]. All studies were rated at low risk of bias for confounding. Four studies were assessed at high risk of bias for selection of participants, due to their retrospective nature or to non-consecutive patient selection [22-24,65]; one [8] was assessed at moderate on this domain and the remaining were rated as low. Two studies [28,29] were assessed at low risk of bias on measurement of intervention and one [65] was assessed at being at high risk of bias; the remaining studies were assessed as being at moderate risk of bias on measurement of intervention mainly due to different version of PI-RAD being used during the study period or lack of clarity regarding measurement. Seven studies [11.22-24.28-30] were assessed as being at low risk of bias for departure from intervention; the remaining studies were rated as moderate on this intervention due to lack of clarity on measurement. One study [65] was assessed as being at moderate risk of bias due to missing data and the remainder were assessed as being at low risk of bias on this domain. All studies measuring detection rates were assessed as being at moderate risk of bias on measurement of outcome either because it was unclear whether the outcome assessor was blinded to the index test when measuring the reference standard or because no reference standard was used to assess the accuracy of both the MPMRI and TRUS-SB detection. Three of the studies [8,22,65] were rated at moderate risk of bias on the domain of selection of reported results and the remaining studies were rated low on this domain. Overall, two [28,29] of the studies were assessed at being at low risk of bias and four [22-24,65] were assessed at high risk of bias. The remaining studies were assessed overall at being at moderate risk of bias (see Appendix 5).

Estimates for the studies comparing TB+TRUS-SB to targeted biopsy alone and TRUS-SB alone for previously negative patients show narrow confidence intervals and fall generally in the same direction of effect, with low study heterogeneity for both CSPCa and CISPCa ($l^2=0\%$ - see Figures 5.1, 5.2, 6.1, 6.2). Tests for subgroups differences among MRI technologies show no significant differences ($l^2=0\%$ - see Appendix 8 for subgroup by type of MPMRI-TB).

The aggregate study evidence certainty for the comparisons was moderate to low after considering the other four factors (inconsistency, indirectness, imprecision, and publication bias) together from the GRADE approach (traditional GRADE summary tables not presented) [15].

Outcomes (MRI-TB vs. MPMRI-TB alone or TRUS-SB alone)

Table 4-7 shows the detection rates of CSPCa and CISPCa for the nine studies reporting detection rates for MPMRI-TB plus TRUS-SB versus targeted biopsy alone or TRUS-SB alone. Six studies used software fusion-guided targeted biopsy [8,11,19,22,23,65], one used cognitive fusion [24], and two used cognitive/software fusion [28,29] (see Table 4-1).

TB+TRUS-SB vs.TB

Overall estimates for CSPCa show an overall effect of 0.05 (95% CI, 0.02 to 0.08, p=0.0005) (Figure 5.1). For CISPCa, the overall effect is 0.09 (95% CI, 0.06 to 0.11, p<0.00001) (Figure 5.2).

TB+TRUS-SB vs.TRUS-SB

Overall estimates for CSPCa for the five studies defining show an overall effect of 0.11 (95% CI, 0.08 to 0.14, p<0.00001) (Figure 6.1). For CISPCa, the overall effect is 0.01 (95% CI, -0.02 to 0.04, p=0.40) (Figure 6.2).

Table 4-7. Cohort studies examining (Q2c) detection rates of targeted biopsy plus TRUS-SB combined and targeted biopsy and
TRUS-SB alone in previously negative patients by different definitions of clinically significant cancer

Study (n)			TB+TRUS-SB vs	.TB alone	•	TB+TRUS-SB vs. TRUS-SB alone			
	MPMRI Navigation system (positive MRI definition)	CSPCa/CISPCa definition	TB+TRUS-SB detection rate (95% CI)*	TB alone detection rate (95% CI)	p-value	TB+TRUS-SB detection rate (95% CI)*	TRUS-SB alone detection rate (95% CI)	p-value	
Boesen, 2018 (n=289)	Cognitive fusion (n=83),	CSPCa: GS≥3+4	30.4% (25,36)	27% (22,32)	0.3587	30.4% (25,36)	20.4% (16,25)	0.0060	
	<u>software fusion (</u> n=289) /PI-RAD v1&2	CISPCa: GS=3+3	19% (15,24)	6.2% (3,9)	0.0000	19% (15,24)	17% (13,21)	0.5164	
Borkowetz, 2017	Software fusion (fusPbx TP -	CSPCa: GS≥7	37.1% (33,42)	31.2% (27,36)	0.0668	37.1% (33,42)	23.8% (20,28)	0.0000	
(n=445)	combined with IR at one site and TR sysPbx at another site) /PI-RAD v1&2 ≥2 of 5 scores	CISPCa: GS=6	NR	NR	NR	NR	NR	NR	
Exterkate, 2020 (n=152)	Software fusion or cognitive fusion or MRI-TB	CSPCa: GS≥3+4	34.9% (27-42)	33.6% (26,41)	0.80927	34.9% (27-42)	15.8% (11,22)	0.21022	
	/PI-RAD v1&2 ≥3 of 5	CISPCa: GS=3+3	18.4% (12-25)	13.2% (9,21)	0.2077	18.4% (12-25)	16.4% (11,22)	0.65084	
Filson, 2016 (n=324)	Software fusion	CSPCa: $GS \ge 3+4$	23.1% (19,28)	18.5% (14,23)	0.1478	23.1% (19,28)	14.8% (11,19)	0.0072	
	/PI-RAD $v2 \ge 3$ of 5 score	CISPCa: GS 3+3	14.5% (11,18)	7.1% (4,10)	0.0026	14.5% (11,18)	14.8% (11,19)	0.9116	
Lian, 2017 (n=101)	Software fusion /PI-RAD v2, \ge 3 of 5	CSPCa: (GS \ge 3 + 4 or GS 6 with MCCL \ge 4 mm)	24.8% (16,33)	21.8% (14,30)	0.618	24.8% (16,33)	12.9% (6,19)	0.03313	
		CISPCa: (GS < $3 + 4$ or GS 6 with MCCL ≥ 4 mm)	18.5% (11,26)	8.9% (3,14)	0.04437	18.5% (11,26)	13.9% (7,21)	0.34360	
Preiser, 2019 (n=78)	MRI/ultrasound <u>software</u>	CSPCa: GS≥3+4	29/78	25/78	0.5029	29/78	24/78	0.3953	
	/ PI-RAD v.2 \ge 3 of 5	CISPCa: GS=3+3	NR	NR	NR	NR	NR	NR	
Say, 2016 (n=143)	Software fusion (MRI-US fusion)	CSPCa: $GS \ge 3+4$	28% (21,35)	23.1% (16,30)	0.3441	28% (21,35)	18.2% (12,25)	0.0716	
	/PI-RAD v1 \ge 3 of 5 score	CISPCa: GS = 3+3	23.8% (17,31)	11.2% (6,16)	0.0058	23.8% (17,31)	16.8% (11,23)	0.1436	
Westoff, 2019 (n=210)	Software fusion	CSPCa: GS ≥ 3+4	38.1% (32,45)	31% (25,38)	0.1239	38.1% (32,45)	30.5% (24,37)	0.101	
	7 PI-RAD VZ ≥3 of 5	CISPCa: GS = 3+3	18.6% (14,25)	12.4% (8,18)	0.0801	18.6% (14,25)	20.5% (15,27)	0.6241	
Zalesky, 2019 (n=174)	Software fusion	CSPCa: GS≥7	35.1% (28-43)	27% (21,34)	0.1052	35.1% (28-43)	25.3% (19,32)	0.0466	
	23 of 5	CISPCa: GS=6	13.2% (9,19)	6.9% (4,12)	0.05	13.2% (9,19)	13.8% (9,20)	0.8729	

 * usi using the 2014 International Society of Urologic Pathology (ISUP) criteria

CI = confidence interval; CISPCa = clinically insignificant prostate cancer; CSPCa = clinically significant prostate cancer; DR = detection rate; fusPbx = fusion biopsy; GS = Gleason Score; MCCL = maximum cancer core length; MPMRI = multiparametric magnetic resonance imaging; MRI = magnetic resonance imaging; NR = not reported; PI-RAD = Prostate Imaging Reporting and Data System; sysPbx = systematic biopsy; TRUS-SB = transrectal ultrasound systematic biopsy; TB = targeted biopsy; TR = transrectal; TP = transperineal, US = ultrasound

	MPMRI-T	B+SB	TB alo	ne		Risk Difference	Risk Difference
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% Cl	M-H, Random, 95% Cl
5.1.1 Cohort studies							
Boesen, 2018	88	289	78	289	14.9%	0.03 [-0.04, 0.11]	
Borkowetz, 2017	165	445	139	445	21.0%	0.06 [-0.00, 0.12]	
Exterkate, 2020	53	152	49	152	7.2%	0.03 [-0.08, 0.13]	_ -
Filson, 2016	75	324	60	324	20.8%	0.05 [-0.02, 0.11]	
Lian, 2017	25	101	22	101	6.0%	0.03 [-0.09, 0.15]	_
Preisser, 2019	29	78	25	78	3.6%	0.05 [-0.10, 0.20]	_ -
Say, 2016	40	143	33	143	8.0%	0.05 [-0.05, 0.15]	
Westoff, 2019	80	210	65	210	9.9%	0.07 [-0.02, 0.16]	
Zalesky, 2019	61	174	47	174	8.6%	0.08 [-0.02, 0.18]	
Subtotal (95% CI)		1916		1916	100.0%	0.05 [0.02, 0.08]	•
Total events	616		518				
Heterogeneity: Tau² =	0.00; Chi²	= 1.16, (df = 8 (P =	= 1.00);	I ^z = 0%		
Test for overall effect:	Z = 3.47 (P	'= 0.000)5)				
Total (95% CI)		1916		1916	100.0%	0.05 [0.02, 0.08]	•
Total events	616		518				
Heterogeneity: Tau² =	0.00; Chi²	= 1.16, (df = 8 (P =	= 1.00);	I²=0%		
Test for overall effect:	Z=3.47 (P	= 0.000)5)				Favours ITB alone) Favours (MPMRI-TB+SB)
Test for subaroup diff	erences: N	ot appli	able				· ····································

	MPMRI-TI	3+SB	TB alone			Risk Difference	Risk Difference
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% Cl	M-H, Random, 95% Cl
5.2.1 Cohort studies							
Boesen, 2018	55	289	18	289	21.4%	0.13 [0.07, 0.18]	-
Exterkate, 2020	28	152	20	152	9.0%	0.05 [-0.03, 0.13]	+
Filson, 2016	47	324	23	324	26.8%	0.07 [0.03, 0.12]	+
Lian, 2017	19	101	9	101	6.8%	0.10 [0.00, 0.19]	
Say, 2016	34	143	16	143	8.0%	0.13 [0.04, 0.21]	_
Westoff, 2019	39	210	26	210	12.7%	0.06 [-0.01, 0.13]	
Zalesky, 2019	23	174	12	174	15.3%	0.06 [0.00, 0.13]	
Subtotal (95% CI)		1393		1393	100.0%	0.09 [0.06, 0.11]	•
Total events	245		124				
Heterogeneity: Tau ² =	0.00; Chi ² :	= 5.14, (df = 6 (P =	: 0.53);	I ² = 0%		
Test for overall effect:	Z = 6.88 (P	< 0.000	001)				
Total (95% CI)		1393		1393	100.0%	0.09 [0.06, 0.11]	•
Total events	245		124				
Heterogeneity: Tau ² =	0.00; Chi ^z :	= 5.14, (df = 6 (P =	: 0.53);	I ^z = 0%		
Test for overall effect:	Z = 6.88 (P	< 0.000)01)				-I -U.S U U.S I Eavours [MPMPLTB+SP] Eavours [TB alone]
Test for subaroup diff	erences: N	ot appli	cable				

	MPMRI-T	B+SB	SB alo	ne		Risk Difference	Risk Difference
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% Cl	M-H, Random, 95% Cl
6.1.1 Cohort studies							
Boesen, 2018	88	289	59	289	15.0%	0.10 [0.03, 0.17]	
Borkowetz, 2017	165	445	106	445	20.9%	0.13 [0.07, 0.19]	-
Exterkate, 2020	53	152	24	152	8.2%	0.19 [0.10, 0.29]	
Filson, 2016	75	324	48	324	20.7%	0.08 [0.02, 0.14]	
Lian, 2017	25	101	13	101	6.6%	0.12 [0.01, 0.23]	_
Preisser, 2019	29	78	24	78	3.4%	0.06 [-0.08, 0.21]	
Say, 2016	40	143	27	143	7.9%	0.09 [-0.01, 0.19]	
Westoff, 2019	80	210	64	210	9.1%	0.08 [-0.01, 0.17]	+ - -
Zalesky, 2019	61	174	44	174	8.1%	0.10 [0.00, 0.19]	
Subtotal (95% CI)		1916		1916	100.0%	0.11 [0.08, 0.14]	•
Total events	616		409				
Heterogeneity: Tau ² =	: 0.00; Chi²	= 5.25, (df = 8 (P =	= 0.73);	I ^z = 0%		
Test for overall effect:	Z = 7.73 (P	< 0.000)01)				
Total (95% CI)		1916		1916	100.0%	0.11 [0.08, 0.14]	•
Total events	616		409				
Heterogeneity: Tau ² =	: 0.00; Chi²	= 5.25, (df = 8 (P =	= 0.73);	I²=0%		
Test for overall effect:	Z = 7.73 (P	< 0.000	001)				Favours (SB alone) Favours (MPMRI-TB+SB)
Test for subaroup diff	ferences: N	ot applid	cable				

Figure 6.2: (<u>MPMRI-TB+TRUS-SB vs. TRUS-SB</u>) Risk differences in detection of <u>clinically insignificant</u> prostate cancer for previously negative men

Q3a Comparison between PI-RAD and non-PI-RAD Likert scales

Only one of the 36 studies reported data on the comparison between PI-RAD and non-PI-RAD Likert scales in the detection of prostate cancer. Rouviere [1] reported on 293 concordant biopsy decisions for 321 lesions (91%) among 215 patients.

Q3b Expertise of operators, MPMRI-TB techniques, optimal number of cores

Expertise of operators

None of the 36 studies compared level of reader experience and its effect on target biopsy yields. Three studies did present reader agreement scores [2,3,16], but did not relate them to reader's experience (mostly compared readings between study centres). However, this was not an outcome of interest to the study.

MPMRI-TB techniques

Table 4-8 shows the three RCTs comparing MPMRI-TB approaches/technologies. Baco et al. [7] randomized 175 biopsy-naïve men (median age 65 years, median PSA 7.3 ng/mL) to assess and compare the outcomes of two-core prostate targeted biopsy guided by computer-assisted fusion of MRI/TRUS images of suspicious lesions followed by 12 core TRUS-SB (MRI group) with that of both two-core targeted biopsy for abnormal digital rectal examination and/or TRUS-suspicious lesions and 12 core TRUS-SB (control group). Clinically significant cancer was defined as GS \geq 3+4. The detection rate for CSPCa for the MRI group and control groups were 44% versus 49% (RD, -0.05 [95% CI, -0.20 to 0.10], p=0.49) and for CISPCa 15% versus 5% (RD 0.11 [95% CI, 0.02 to 0.19], p=0.02).

Arsov et al. [27] randomized 210 men to either in-bore targeted biopsy alone (study arm A: median age 66 years, median PSA 10.0 ng/mL) or software fusion-guided targeted biopsy plus TRUS-SB (study arm B: median age 68 years, median PSA 10.8 ng/mL) in patients with at least one prior negative TRUS-SB. The detection rates for CSPCa for two study arms were 29% (in-bore) versus 32% (fusion-guided targeted biopsy plus TRUS-SB) (RD -2.5 [95% CI, -0.15 to 0.10], p=0.70) and for CISPCa 8% versus 8% (RD -0.00 [95% CI, -0.07 to 0.07], p=0.97).

Wegelin et al. [58] randomized 665 patients to either of three MRI-based targeted biopsy techniques. The authors found no significant differences in detection rate of CSPSC among the three MRI-based targeted biopsy techniques (fusion-guided TB vs. cognitive registration MRI-transrectal ultrasound-TB vs. MRI-TB) (see Table 4-8). Differences in CSPCa detection rates were 2% between fusion-guided targeted biopsy and MRI-TB (p=0.8), 1% between fusion-guided targeted biopsy and Cognitive registration MRI-transrectal ultrasound targeted biopsy (p>0.9), and 1% between cognitive registration MRI-transrectal ultrasound-TB and MRI-TB (p>0.9).

Optimal number of cores per target

None of the 36 studies reported on the optimal number of cores per target.

		MPMRI navigational							CSD	
	CSPCa/	system							detection	Difference
	CISPCa	(positive	Sample	Biopsy	CSD detection	Sample	Biopsy	1	rate (95%	(95% CI)
Study	definition	definition)	size	cores/pt	rate (95% Cl)	size	cores/p	t	CI)	P-value
Biopsy Naïve			FUS-TB pl	us TRUS-SB		TB (abn.	+ TRUS-SB			
Baco, 2016	GS ≥3+4	Image fusion (≥3	86 MRI-	12 TRUS-	44% (38/86)	89	12 TRUS-	SB	49% (44/89)	-0.05 (-20 to
(n=175)		of 5 scores)	ТВ	SB plus			plus 2-co	ore		0.10, p=0.49
	GS 3+3	(transperineal)	plusTRUS	med. 2-	15% (13/86)		TB for		5% (4/89)	0.11 (0.02 to
			-SB vs.	core TB,			abnorma	l		0.19), p=0.02
			TRUS-SB	range 1-4			DRE and	or		
			+ IB (palable				TRUS			
			(parable				losions	12		
			RUS				lesions			
			suspicous							
Previously Nega	tive		In-bore T	В		FUS-TB p	lus TRUS-	SB		
Arsov, 2015	GS ≥3+4	Software fusion	106	2 from	29.2% (31/106)	104	12 plus 2		31.7%	-2.5 (-15 to
(n=210)		and in-bore		each			from eac	h	(33/104)	10) p=0.7
	GS 3+3	(≥3 of 5 scores)		lesion	7.5% (8/106)		lesion		7.7% (8/104)	-0.00% (07
		(transrectal or								to .07) P=0.97
		transperineal)								
Previously Nega	tive	FUS-TB (n = 79)	1	COG-TB (n	n = 78)	MRI-TB (n	ı = 77)			P-value
			Detecti							
			on rate							
	CSPCa/		of	Med.				Dete	ection	
	CISPCa	Med. biopsy	csPCa,	biopsy	Detection rate	Med. biop	osy	rate	of csPCa,	Pearson chi-
Study	definition	cores/pt	n (%)	cores/pt	of csPCa, n (%)	cores/pt		n (%	5)	square
Weglin, 2019	GS ≥3 + 4	4 (IQR 3-5)	27 (34.2)	3 (IQR 3-	26 (33.3)	2 (IQR 2-3)		25 (3	32.5)	>0.9
(n=665)	GS 3+3		NR	4)	NR			NR		NR
Abbreviations: abr	n.= abnormal; Cl	= confidence interv	al; COG-TB =	cognitive registered	gistration MRI-transr	ectal ultraso	und; CSD =	= clinio	cally significan	t disease; CSPCa
= clinically significant prostate cancer; CISPCa = clinically insignificant prostate cancer; DRE = abnormal digital rectal examination; FUS-TB = MRI-transrectal										
ultrasound fusion;	GS = Gleason s	core; IQR = interqu	artile range;	MCCL = max	imum cancer core l	ength; Med.	= median;	; MPM	RI = multipara	metric magnetic
resonance imaging	g; MRI = magnet	ic resonance imagin	ng; NK = not	reported; pt	: = patient; KCI = r	andomized o	ontrolled	trial;	IB = target bi	opsy; IRUS-SB =
transrectal ultraso	ouna-guiaea syst	ematic biopsy; TRUS	susd = WRI-	transrectal u	ltrasound-suspicious	lesions.				

Table 4-8. (Q3b) RCTs comparing patients randomized to different MPMRI targeted biopsy approaches/technologies for biopsynaïve and previously negative patients

Adverse Events and Other Study Outcomes

MPMTI-TB reported adverse events included sepsis (0.4%), prostatitis (1.2%) [16], prostatitis (1%) [1], complicated urinary tract infection (3%), lower urinary tract symptoms (3%), and bleeding (1.5%) [2]. See Appendix 6 for a complete list of reported adverse events.

No patient outcomes regarding a positive change in patient management or survival were reported in the included studies.

ONGOING, UNPUBLISHED, OR INCOMPLETE STUDIES

Table 4-9 includes ongoing studies and studies that have reported an interim analysis, but are not yet complete. Studies that have closed, but have not yet been published, are also included.

Protocol ID(s)	Title and details of study
NCT03960112	Official title: Multicentric Evaluation of the True Negative Predictive Value of
	Multiparametric MRI for the Detection of Prostate Cancer Using Cystoprostatectomy
	Specimen as Reference Standard
	Study type: Treatment groups: MPMRI vs. Reference Standard
	Estimated enrolment: 150
	Start date: May 1, 2020
	Date trial summary last modified: Jan. 10, 2020
	Estimated primary completion date: July 1, 2022
	Status: Not yet recruiting
	Primary results reported: none
NCT03572946	Official title: Targeted Biopsy or Standard Biopsy for Clinical Significant Prostate Cancer
	Detection
	Study type: Treatment groups: MPMRI vs. TRUS-SB
	Estimated enrolment: 400
	Start date: Oct. 9, 2018
	Date trial summary last modified: Oct. 14, 2019
	Estimated primary completion date: Oct. 14, 2019
	Status: Recruiting
	Primary results reported: none
NCT02936258	Official title: PRostate Evaluation for Clinically Important Disease: MRI vs.Standard
	Evaluation Procedures
	Study type: Treatment groups: MPMRI vs. TRUS-SB
	Estimated enrolment: 450
	Start date: Nov., 2016
	Date trial summary last modified: Feb. 22, 2018
	Estimated primary completion date: Nov., 2019
	Status: Unknown
	Primary results reported: none
NCT02678481	Official title: MR-targeted vs. Random TRUS-guided Prostate Biopsy
	Study type: Treatment groups: MPMRI vs. TRUS-SB
	Estimated enrolment: 90
	Start date: Nov., 2014
	Date trial summary last modified: Aug. 22, 2016
	Estimated primary completion date: Aug., 2016
	Status: Unknown
NCT02 (502 (/	Primary results reported: none
NC102450266	Controlat title: Study Comparing MRI/Ultrasound Fusion-guided Prostate Biopsy Versus
	Systematic Transrectal Ultrasound-guided Biopsy
	Study type: Treatment groups: MPMKI VS. MPMKI
	Estimated enforment; 300
	Start date: FeD., 2015 Data trial summary last modified: Nav 21, 2015
	Date that summary last modified: May 21, 2015
1	ESTIMATED DI MATV COMDIELION OALE: FED., 2010

	Status: Unknown
	Primary results reported: none
NCT02138760	Official title: Comparison of MRI Fusion Biopsy Techniques in Men With Elevated PSA and Prior Negative Prostate Biopsy
	Study type: Treatment groups: MPMRI vs. MPMRI
	Estimated enrolment: 400
	Start date: Aug., 2014
	Date trial summary last modified: May., 2014
	Estimated primary completion date: Dec., 2015
	Status: Unknown
	Primary results reported: none

DISCUSSION

This report updates a previous systematic review evaluating MPMRI in the diagnosis of CSPCa. The current evidence summary includes 36 studies examining the research questions, seven of which were RCTs [6,7,16,17,25,27,58], with the remainder being cohort studies.

Based on the evidence, for biopsy-naïve patients at elevated risk of CSPCa, MPMRI is recommended prior to biopsy in patients who are candidates for curative management with suspected clinically localized prostate cancer. In five studies [3-5,18,19] where TTMB was the reference standard, sensitivity of MPMRI was reasonable at 87-96%, while NPVs were as high as 92%.

Two RCTs [16,17] compared CSPCa detection rates of MPMRI-TB versus TRUS-SB for biopsy-naïve men. In a 25-centre, non-inferiority trial (PRECISION), 500 biopsy-naïve men were randomized to either MPMRI + MPMRI-TB, if a lesion was detected, or TRUS-SB. MPMRI-TB detected significantly more CSPCa compared with TRUS-SB (38% vs. 26%, p=0.005). MPMRI-TB detected significantly less CISPCa than TRUS-SB (9 vs. 22% p<0.001) [16]. Porpiglia et al. [17] randomized 212 men to either MPMRI-TB or TRUS-SB. MPMRI-TB detected significantly more CSPCa compared with TRUS-SB (44% vs. 18%, p<0.001) in this study. Thus, MPMRI when combined with MPMRI-TB reduces CISPCa detection rates, without an overall reduction in CSPCa detection rates while reducing the number of men undergoing biopsy. The PRECISE trial [81] was a third multicentre RCT for biopsy-naïve men performed in Canada. This trial was published just at the time of writing of this guideline. The study design was similar to the PRECISION trial and involved five Canadian centres, three of which were in Ontario. MPMRI-TB and TRUS-SB were compared for 453 biopsy-naïve men. As with the PRECISION trial, the PRECISE trial showed noninferiority of the MPMRI-TB. Biopsy was avoided in over one-third of men with a reduction in the diagnosis of CISPCa from 22% to 10%. In addition, there were fewer biopsy-related complications in the MRI arm [81].

Sixteen cohort studies [1,2,6-14,20,21,23,24] presented detection rates comparing MPMRI-TB to TRUS-SB for biopsy-naïve men and, of these, two [1,2] were prospective MCTs. A paired diagnostic study (MRI-FIRST) [1] enrolled 251 patients. Patients received both TRUS-SB and MPMRI-TB. There were no significant differences in detection of CSPCa in MPMRI-TB versus TRUS-SB (32% vs. 30%). However, MPMRI-TB detected significantly less CISPCa than TRUS-SB (6% vs. 20%, p<0.0001). Five percent of CSPCa was detected by TRUS-SB that was missed by MPMRI-TB and 8% was detected by MPMRI-TB and missed by TRUS-SB. Thus, detection of CSPCa was improved by combining both TRUS-SB and MPMRI-TB [1]. Another prospective MCT enrolled 646 men to receive MPMRI followed by TRUS-SB and in-bore MPMRI-TB [2]. This study showed similar CSPCa detection rates (25% vs. 23%); however, CISPCa was detected in significantly fewer patients by MPMRI-TB than in TRUS-SB (14% vs. 25%, p<0.0001). MPMRI-TB enabled biopsy avoidance in 49% of patients while missing only 35 cases with CSPCa. Meanwhile, TRUS-SB would have over-detected CISPCa in 20% of patients [2]. In summary, TRUS-SB does detect additional CSPCa when combined with MPMRI-TB but the principal advantage of MPMRI in this population,

which is biopsy avoidance, would be lost if all patients still underwent TRUS-SB. This recommendation of TRUS-SB combined with MRI-TB was made for MPMRI-positive patients in these guidelines

Based on the evidence, in patients who had a prior negative TRUS-SB and demonstrated an increased risk of having CSPCa, MPMRI should be performed. The overall improvement across studies in CSPCa detection for MPMRI-TB plus TRUS-SB compared with TRUS-SB alone was 11% (95% CI, 8 to 14%, p<0.00001) (Section 4 - Figure 6.1). Recent estimates suggest that between 0% [32] and 31% [34] of patients with CSPCa may be missed if patients with a negative MPMRI are not biopsied. Seven studies reported on the diagnostic accuracy of MPMRI for previously negative patients [4,5,26,31-34]. As a group, the seven studies showed sensitivities of 78%-100%, specificities of 30%-100%, PPVs of 36%-100%, and NPVs of 69%-100% (Table 4-5). The overall improvement in CSPCa detection rate for the 15 cohort studies comparing MPMRI-TB alone to TRUS-SB was 5% (95% CI, 3 to 7%, p<0.0001) (Section 4 - Figure 4.1) with a reduction of CISPCa detection of 7% (95% CI, 4 to 9%, p<0.0001) (Section 4 - Figure 4.2). The overall improvement in CSPCa detection for the five cohort studies comparing MPMRI-TB plus TRUS-SB to MPRMRI-TB alone was 5% (95% CI, 2 to 8%, p=0.0005) (Section 4 - Figure 5.1). In comparison to the biopsy-naïve population there is a consistent improvement in CSPCa detection when performing MPMRI-TB compared with TRUS-SB.

Recommendation 3 is based on expert opinion and is an essential component of the successful implementation of these guidelines. Further work is needed in the development of quality assurance standards for MPMRI to be successfully implemented across the province.

Study limitations

There are several limitations in the literature examining MPMRI in the diagnosis of prostate cancer. First, the definitions of clinically significant cancer varied across studies. To combat this, we focused on studies with a definition of CSPCa of GG ≥ 2 (GS $\ge 3+4$). Likewise, the definition of MPMRI-positive results varied; although most studies used a score ≥ 3 of 5, a few used scores of ≥ 4 of 5 [10,32] and ≥ 2 of 5 [8,9,14]. A lower threshold of the PI-RAD score may result in a higher sensitivity and fewer true CSPCa patients will be missed, with the tradeoff being more non-clinically significant patients will have an unnecessary biopsy after MPMRI because of a lower specificity. Fourth, MPMRI techniques differed among studies, and subgroup analysis was performed to combat this (see Appendix 8). However, this made for smaller sample sizes when examining these groups. Fifth, and most notably, when comparing detection rates of CSPCa and CISPCa between MPMRI (±TB) and TRUS-SB, for many of the studies no pre-planned reference standards were used to confirm the results from MPMRI followed by targeted biopsy and TRUS-guided systematic biopsy. Thus, we do not know the true rate of false negative and false positives for either biopsy technique (MPMRI-TB and TRUS-SB). Finally, no patient outcomes were reported regarding positively changing patient management or survival outcomes.

CONCLUSIONS

Based on the existing evidence, the guideline Working Group recommends MPMRI prior to biopsy in patients who are candidates for curative management with suspected clinically localized prostate cancer. The recommendation for performing MPMRI in patients with prior negative biopsy remains unchanged from the prior guideline. Performing MPMRI and MPPRI-TB according to the current PI-RADS standard is a requirement. Finally, the establishment of a quality assurance program will be essential for implementation across the province.

Multiparametric Magnetic Resonance Imaging in the Diagnosis of Clinically Significant Prostate Cancer

Section 5: Internal and External Review

INTERNAL REVIEW

The guideline was evaluated by the GDG Expert Panel and the PEBC Report Approval Panel (RAP) (Appendix 2). The results of these evaluations and the Working Group's responses are described below.

Expert Panel Review and Approval

Of the nine members of the GDG Expert Panel, eight members voted and one abstained, for a total of 89% response in August 2020. Of the eight who voted, seven approved the document (88%). The main comments from the Expert Panel and the Working Group's responses are summarized in Table 5-1.

Ex	pert Panel emailed comments	Working Group comments
٠	The studies have shown that TRUS in addition to MRI-TB detected	PRECISE trial results were added to
	an additional 6% of CSPCa. Although there was an associated	the Discussion. We cannot add it to
	increase of 8% of CISPCa, the benefits of detecting additional	the formal review as this will require
	CSPCa in men already undergoing biopsy (MRI-TB) outweighs the	a complete reanalysis and literature
	risk of detecting additional CISPCa, which was not much more	search to update with all recent
	than the increased detection rate for CSPCa. This is nicely	studies. This is beyond the current
	explained in the justification section and feel that it is justified.	time constraints.
	This can be changed later if subsequent evidence does no longer	
	supports this.	Removed specification of radiation
٠	In the qualifying statements in Recommendation 1, I would	therapy and surgery leaving the door
	include focal therapies in the statement on treatment in addition	open to focal therapy or other
	to surgery and radiation.	curative intent therapies in the
٠	I agree with the authors on these recommendations. We also	tuture.
	have our own Canadian multicentre study support to this.	
	Undoubtedly, this will result in a large increase in the volume of	
	prostate MRIs leading to many radiologists needing to train and	
	interpret these studies. Thus, quality assurance is critical as this	
	becomes standardized use and I strongly agree with inclusion of	
	the statement in Recommendation 3 about having a local quality	
	assurance method in place, until a formal provincial one is	
	available. From this, thope a formal quality assurance program	
	performers a priority and is established as soon as possible in the	
	resources in Canada, there is pressure for sites (mine included)	
	to perform BPMRI to meet the demands of these exams. This	
	further adds to the importance of implementation of a formal	
	quality assurance program.	
W	ith respect to the additional requests:	No action required
•	Regarding Recommendation 1, I would classify the strength of	
	this recommendation as "Recommendation to use the diagnostic	
	tool" (benefits of the diagnostic tool in the target patients	
	clearly outweigh the harms for nearly all patients and the group	
	is confident to support the recommended action).	

	Pogarding Pocommondation 2 I would again classify the	
•	Regarding Recommendation 2, I would again classify the	
	strength of this recommendation as Recommendation to use the	
	diagnostic tool (benefits of the diagnostic tool in the target	
	patients clearly outweigh the harms for nearly all patients and	
	the group is confident to support the recommended action).	
٠	I would suggest that the Table on page 1, Section 1 does not	
	really apply to the collection of recommendations listed under	
	Recommendation 3. These recommendations pertain less to	
	whether a diagnostic tool should be used and rather more to	
	how the diagnostic tool that is being recommended in	
	Recommendations 1 and 2 (i.e. MPMRI) should be implemented	
-	"the use of MDMDLTP plus TDUC CP or MDMDLTP plane for	No action required
•	notionts who have had a prior possible TDUS C?	No action required
	patients who have had a phor negative TRUS-S ;	
	To a large extent depends upon time interval since last SB. If >2	
	years since last biopsy but rising PSA, then repeat SB with TB	
	(many urologists would send patient for SB biopsy irrespective	
	of negative MRI or (PSA density if >2 years with increasing PSA	
	volume, which makes it difficult to justify TB only if longer	
	duration since last biopsy). Also as targeted focal therapy	
	evolves and is brought into standard of care options, it is	
	imperative that disease outside of the targets is also ruled out	
	The minimum acceptable standards in the acquisition	
-	interpretation and reporting of MPMPI and the minimal	
	accontable standards for performance of MDMDI TB	
	Strongly support this statement. Need to have means of auditing	
	strongly support this statement. Need to have means of auditing	
	the quality and reporting of prostate MPMRI. There should be	
	means to capture the NPV of MRI reads as well, else there will	
	be tendency of calling only the definite lesions (PI-RADS 4/5)	
٠	The Precise data likely would not influence the	PRECISE trial results have been added
	recommendations, but they should be incorporated into the	in the Discussion. We will await
	evidence discussion. I realize that this would mean re-doing	publication of results as e-pub or
	many of the Forest plots and data summaries. I strongly	abstract before releasing this
	recommend, however, that this be done. This was a major trans-	document.
	Canadian initiative, co-funded by the Ontario Institute for Cancer	Removed specification of radiation
	Research, whose goal was to influence funding for prostate MRI	therapy and surgery leaving the door
	in Canada. I have indicated in the edited version which plots	open to focal therapy or other
	would require revision. But for COVID, it would have been	curative intent therapies in the
	presented at major spring meetings this year and therefore be in	future.
	the public domain	"Therefore I believe the concept of
	Obviously the issue of the role of systematic bionsies in men	risk stratification as the basis for
-	by house the issue of the role of systematic biopsies in men	decision making should be addressed
	to maximize diagnosis, they are clearly required. But another	in the document more than it is "
	co maximize diagnosis, they are clearly required. But another and reduce number of	We have not further delved into risk
	objective is to minimize morbially and reduce number of the	stratification as this is a extensive and
	cores. In the lower-risk patient, the NPV in the regions of the	complex topic and beyond the scope
	gland where the MRI is negative is sufficiently high (90%,	of this document. A shange has been
	according to the Moldaver paper) that systematic biopsies may	of this document. A change has been
1	be omitted. Therefore I believe the concept of risk stratification	made to the target population
1	as the basis for decision making should be addressed in the	definition as follows:
1	document more than it is.	"Patients with an elevated risk of
•	Treatment alternatives in Recommendation 1 should be	CSPCa (defined as International
	expanded beyond surgery and radiation, (i.e., to include partial	Society of Urologic Pathology (ISUP)
	gland ablation and energy-based technologies). The statement	Grade Group (GG) ≥ 2) as estimated by
	implying that radiation and surgery are the only curative options	available clinical information and
	is outdated. Suggest including 'partial gland ablation' as a	

	treatment option. (This is not to endorse partial gland ablation,	tools such as risk calculators and
	but only to acknowledge they are approved options that are	nomograms"
	often offered to patients).	
٠	I have some serious concerns about the wording of	The principal role for MRI in biopsy
	Recommendation 2. In particular, the statement 'In patients	naïve patients is complete biopsy
	who had a prior negative TRUS-SB and demonstrate a high or an	avoidance to reduce the risk of over-
	increasing risk of having CSPCa in whom curative management is	diagnosis. This is the primary
	being considered: MPMRI should be performed. The problem	advantage of the strategy and
	with this strategy is the risk of overdiagnosis. This is a complex	produces the largest reduction in
	topic. There are two key studies that are not referenced in the	overdiagnosis. Once a decision to
	document that should be, and the implications	perform a biopsy is made because of
	discussed. First, the ESRPC study by Schröder et al., "Eleven-	a positive MRI it is assumed that there
	year outcome of patients with prostate cancers diagnosed during	is also an intent to pursue curative
	screening after initial negative sextant biopsies ". These men	intent therapy. MPMRI-TB combined
	received repeat PSAs at four and eight years, with repeat biopsy	with TRUS-SB in MRI-positive patients
	if PSA remained elevated. The results were that prostate cancer	still allows for overall reduction in
	mortality was extremely low in men with negative biopsy: seven	TRUS-SB in those patients who are
	deaths in the 3056 patients with negative biopsy, an 11-year	MPMRI negative with only a slight
	probability of 0.03%, about 10-fold lower than the population	increase in CISPCa detection (8%)
	average. Second, the NCI study of concurrent MRI	while increasing CSPCa detection by
	and TRUS (Ahdoot et al.) is also very relevant to this	6%. This also provides a backstop for
	question. The study reports the results of MRI biopsy in 999 men	varying quality and experience in
	with negative TRUS biopsy: 791 had benign findings on MRI-	MPRMI reading and targeted biopsy
	targeted biopsy, but 208 were diagnosed with cancer, 134 of	quality.
	whom had high-grade disease, with 37 with the very highest risk	
	cancers, Grade Group 4 or 5.	
•	The message of the Schröder et al. study is that men with a	
	negative systematic biopsy have very low prostate cancer	
	mortality. The NCI study shows that in men with a negative	
	systematic biopsy, an MRI and targeted biopsy-based strategy	
	results in a lot of cancer diagnosis (20%, and 13% significant	
	cancer). The very significant concern is that finding these	
	additional cases will have little or no effect on prostate cancer	
	mortality, i.e., a very high NND, particularly in the non-high-risk	
	patient.	
•	So, I am not sure that an evidence-based approach justifies a	
	recommendation that MRI and targeted biopsy should be done in	
	men with a negative biopsy. Therefore, in addition to including	
	the above in the evidence discussion, Recommendation 2	
	should be modified to take out the phrase 'increasing risk' so that	
	it is confined to high-risk men only. 'Increasing risk' is not	
	defined and too inclusive.	

RAP Review and Approval

Three RAP members reviewed this document in August 2020 The RAP approved the document on August 5, 2020. The main comments from the RAP and the Working Group's responses are summarized in Table 5-2.

Table 5-2. Summary of the Working Group's responses to comments from RAP.

Comments	Responses			
• Why did the group not include a patient representative?	All edits incorporated. Patient			
	representatives were consulted			

•	Implications: Not sure if there is a way to quantify the patient's anxiety to a false negative or a false positive and need for unnecessary biopsies. I know the tables are already busy but the false positive and missed cancer rates are helpful. They are in the text but not in the tables.	during the project plan and recommendation phases.
•	Although PEBC has it structure for its documents, this reviewer found it helpful to start in Section 4 in order to understand the technology, the issues and the multitude of acronyms. Would it possible to add a sentence near the beginning of the document that could direct others to this section if they need grounding in the issues related to MPMRI.	All edits incorporated. A list of definitions has been added to document.
•	Recommendations 1 and 2 - Not recommending TRUS-SB for patients that have already been diagnosed with CSPCa using TB: the reviewers commented that it seems like an extra biopsy (SB) for a group that have already been confirmed using TB, but they acknowledge (but do not know whether) it is easier to bring all MPMRI-positive patients in at the same time for both biopsies (PEBC staff review). Recommendation 1 - Suggesting TRUS-SB for MPMRI- negative and MPMRI-TB-negative biopsy-naive patients. For biopsy-naive patients 11.3% of MPMRI-negative patients and 7.5% of MPMRI-TB-negative would have been missed if TRUS-SB in studies reporting the data - this seemed like a lot of potential missed cases to the reviewers. These percentages were lower for previously negative patients.	Recommendation 1: The issue of how TB alone should be interpreted in overall whole gland Gleason scoring has not been resolved in the care community. TB+SB is believed to be necessary if MPRI is positive in biopsy-naïve patients as multifocality and positive biopsy in other regions not seen by MRI is important in clinical decision making and treatment planning given the use of focal dose escalation therapies. Once you bite the bullet and decide for a biopsy you want the whole picture. In addition, the risk of severe complications such as hospital admission for urosepsis does not go up when you go from target to targeted plus systematic biopsy although minor complications do. A par like this can be added to the document if needed. The patients that gain the most in the biopsy-naïve group are the MRI- negative patients. The primary goal is safe avoidance of CISPCa detection (over-detection) in this cohort. Although the miss rate if no biopsy is performed seems high it is no higher than SB alone so we leave it to the discussion of the patient and the urologist with a commitment to follow-up if biopsy is not being done of prime importance. If we insist on SB in all MPMRI-negative patients who are biopsy naïve then there is no point in doing the MRI up front, we should do it after the SB and then we are back to Rec 2 - prior negative SB.
		rate and lose a principal advantage

	of biopsy avoidance. This is the core controversy of Recommendation 1 and will be an ongoing point of contention. Recommendation 2: If there has been a long interval since last SB then they should have both SB and TB but if not then it is not necessary. Therefore, we offer the discretion of SB to the oncologist in this group of patients.
--	---

Table 5-3. Summary of the Working Group's responses to comments from the Consultation Group.

Comments		Responses
•	Patients expressed concerns re: accessibility of MPMRI (and related expertise) in their areas.	Explanation regarding accessibility explained in text.
•	Patients were concerned about Recommendation 3 and if there are any quality assurance measure in place in Ontario for the administration of MPMRI.	Issue of quality assurance addressed in Section 2 of report.
•	Generally, the patient representatives thought the recommendations were well written.	No action required.

EXTERNAL REVIEW

External Review by Ontario Clinicians and Other Experts

Targeted Peer Review

Five targeted peer reviewers from Ontario and other Canadian Jurisdictions (Quebec and Alberta) who are considered to be clinical and/or methodological experts on the topic were identified by the Working Group and the MPMRI in the Diagnosis of Clinically Significant Prostate Cancer GDG. Two agreed to be the reviewers (Appendix 2). Two responses were received. Results of the feedback survey are summarized in Table 5-3. The main comments from targeted peer reviewers and the Working Group's responses are summarized in Table 5-4.

Table 5-3.	Responses	to nine iten	ns on the	e targeted	peer	reviewer	questionnaire	•
								_

	Reviewer Ratings (N=2)				
Question	Lowest Quality (1)	(2)	(3)	(4)	Highest Quality (5)
1. Rate the guideline development methods.					2
2. Rate the guideline presentation.				2	
3. Rate the guideline recommendations.				2	
4. Rate the completeness of reporting.					2
5. Does this document provide sufficient information to inf orm your decisions? If not, what areas are missing?					2

6. Rate the overall quality of the guideline report.				1	1	
	Strongly Disagree (1)	(2)	Neutral (3)	(4)	Strongly Agree (5)	
 I would make use of this guideline in my professional decisions. 				1	1	
8. I would recommend this guideline for use in practice.				2		
9. What are the barriers or enablers to the implementation of this guideline report?	Access outside tertiary centres. Access to <i>I</i> facilities, and especially experienced Radiology for reporting, and targeted biops is limited. Therefore, making standard of c recommendations is likely to provoke some issues especially for rural patients.					

Table 5-4. Summary of the Working Group's responses to comments from targeted peer reviewers.

Comments	Responses		
One thing that I was uncertain of is the nature of	We have added a phrase in "Target populations":		
a "negative biopsy" (i.e., no prostate cancer	Patients with an elevated risk of CSPCa (defined as		
seen or does a negative biopsy include GG=1	ISUP GG \geq 2), as estimated by available clinical		
prostate cancer). It might be worthwhile to	information and tools such as risk calculators and		
make a disclaimer that this guideline is not	nomograms, of who are A) biopsy-naïve or B) have		
addressing the use of MPMRI for men diagnosed	had a prior negative TRUS-SB <u>defined as no prostate</u>		
with CISPCa on previous biopsies. I wonder if a	<u>cancer on biopsy of any grade group.</u>		
quick sentence to clarify that in the "Target	A definition has been added under qualifying		
Population" section may ensure clinicians are not	statements for recommendation 2:		
expecting recommendations on the use of MPMRI	 Prior negative TRUS-SB is defined as no cancer of 		
in patients on active surveillance.	any grade group on prior biopsy		

Professional Consultation

Feedback was obtained through a brief online survey of healthcare professionals and other stakeholders who are the intended users of the guideline. All radiation oncologists and urologists in the PEBC database were contacted by email to inform them of the survey (n=202). Twelve (5.9%) responses were received. Eighteen stated that they did not have interest in this area or were unavailable to review this guideline at the time. The results of the feedback survey from 12 people are summarized in Table 5-5. The main comments from the consultation and the Working Group's responses are summarized in Table 5-6.

Table 5-5. Responses to four items on the professional consultation survey.

	Number 12 (5.9%)					
	Lowes	Lowes				
General Questions: Overall Guideline Assessment	t					
	Qualit				Highest	
	У				Quality	
	(1)	(2)	(3)	(4)	(5)	
1. Rate the overall quality of the guideline report.				6	6	
					Strongly	
	Strong				Agree	
	ly	(2)	(3)	(4)	(5)	

		Disagr				
		ee				
		(1)				
2.	I would make use of this guideline in my professional decisions.			2	3	7
3.	I would recommend this guideline for use in		1		5	6
	practice.					
4.	What are the barriers or enablers to the implementation of this guideline report?	Lack of access to MRI and fusion biopsy technology is mentioned as an issue in IMPLEMENTATION CONSIDERATIONS section of the Discussion, A sentence has been added: "The lack of ready access to computer-aided fusion biopsy systems may require the use of cognitive fusion biopsy in many centres which will require additional operator training."				psy in section of added: ter-aided he use of tres which ning."

Table	5-6.	Summary	of	the	Working	Group's	responses	to	comments	from	professional
consul	ltants	.									

Comments	Responses			
If MRI becomes insured in biopsy-naïve patients, then their delay for study will go from 2-3 months now to 6 months because the hospitals do not have the capacity. Also the stipend for MRI-fusion biopsy and increase significantly, because of the extra planning time and procedural time compared to standard TRUS-biopsy. Finally, there are very few doctors- radiologists or urologists that are doing fusion biopsies, because of the exorbitant costs of the machines and the disposables. How will that be addressed?	No action required.			
Will need to look at accessibility and wait times	No action required.			
for the whole province. Congratulations on this great guideline!				
 Please do not use CSPCa as a short form in the 	We have added a list of acronyms into the			
context used. Most readers will naturally	Appendices			
interpret that as castrate-sensitive prostate				
cancer as it is so deeply engrained in	A sentence has been added to the Introduction of			
genitourinary language. I continually reverted	Section 4 as follows: "The scope of these recommendations does not			
reading this, even though it is clearly stated	include the use of MRI in active surveillance."			
otherwise at the start of the text.				
• The target population is not exactly clear.				
Presumably patients "at elevated risk" are				
those with a nodule and/or elevated PSA but				
the parameters do not seem to be stated -				
nation populations differ within the				
literature.				
What about the use of MRI in active				
surveillance of low-risk patients who have a				
previous positive (but low-risk) biopsy?				

MPMRI is not widely available everywhere and,	No action required.
where it is available, there are often significant	
restrictions for use and/or potentially long wait	
times. It is also highly dependent on operator and	
reader expertise and should not be performed	
unless that expertise exists. However, the	
authors already stress this fact in their very well	
written document.	
Barriers might include inability to get a MPMRI	No action required.
and/or MPMRI-TB in a timely fashion as well as	
consistent reporting of these MRI's by radiologists.	
Barriers:	No action required.
 Lack of access to MRI or lack of timely access. 	
-Funding concerns for the institution, there is	
conflicting information around whether	
institutions can get paid for this.	
-Does not address PSA, so normal MRI and high	
PSA should be addressed.	
I think some mention of PSA is indicated (also	These points are well taken; however, specific
maybe DRE abnormalities) The report at face	recommendations on how risk should be assessed
value indicates that a normal MPMRI should lead	are difficult and beyond the scope of this
to a shared decision but implies a biopsy is not	Guideline.
needed. I think this is very different for a patient	
with a PSA of 8 versus a PSA of 25, (or a DRE	
abnormality perhaps) or a very high PSA density.	
I do not see these items addressed.	
I agree with the recommendations regarding	No action required.
management of MPMRI-positive patients, but	
have unease about recommending no biopsy for	
MPMRI-negative patients. This could involve	
missing clinically significant cancer in over 20%	
of patients, which I think is too high. I would be	
interested in lay/ patient opinion on this.	
Page 2 (Recommendation 1)	All suggested edits have been addressed in the
- "Between 8% to 24% of patientsmissed by a	text.
negative MPMRI". Warning, this sentence	 Regarding the PROMIS study, we have
suggests that up to 24% of CSPCa may be	corrected this. For PROMIS we have changed
missed by MPMRI. In fact, this result is based on	some of the wording in the Key Evidence
the NPV and should be only interpreted for	section for Recommendation 1 and in the
negative MPMRI population instead of the	Discussion.
whole population who had MPMRI result. It	 The review by Drost did not meet our study
could also be useful to specify what you mean	criteria and, thus, was not used (did not
by a negative MPMRI result (PIRADS 1-2).	separate biopsy naive and previously negative
Page 3 (Recommendation 1)	men according to our inclusion criteria).
- Bullet point #1: Wrong information about	 The Australian Guideline was not included
PROMIS study "if MPMRI-IB was the only	because it did not adequately separate
piopsy performed, There was no MPMRI-IB	biopsy-naïve and previous negative patients
In this study. The reference test was TPM-	• Changed the term "diagnose" to "help
Diopsy Dy TRUS-Diopsy.	diagnose" in the text as suggested.
- Dullet point #2: The principal value of MPMRI	• Edits have been added to the text to address
reduction. " You should be continue with this	the reviewer's comments regarding the
reduction	content of the discussion.
Furthermore, this result is not justified in the	
Furthermore, this result is not justified in the	

section "Biopsy-naïve patients (Question 1) of	
the guideline. Many studies are available to	
estimate the number of biopsy avoidance based	
on a negative MPMRI result among the biopsy-	
naïve patients (see Cochrane review Drost FH	
et al. 2019).	
- Bullet point #3: same comment about	
" MPMRI may miss between 8% to 24%". In this	
section, you should more strongly emphasize	
the goal of added MPMRI in the clinical	
diagnosis pathway in biopsy-naïve population.	
biopsy avoidance and safe avoidance of CISPCa	
Results in this section of the guideline and	
Section 3 may be more explicit to justify this	
objective	
Bullet points#2 #3 #4. Very interesting	
information but few results to support them in	
the section " Justification for Pecommendation	
$3^{"}$ and on page 49 (O3a, O3b). Data issued from	
Becommendations 1 and 2 should be more	
explicit to justify these bullet points	
Page 11 (Introduction)	
3rd paragraph: "Over the past several	
years MPMRI as a non-invasive tool to	
diagnose and localize CSPCa". The use of "to	
diagnose and localize CSFCa. The use of to	
context. The diagnosis is based on bionsy result	
and pathological analysis and not the MPMPI	
result itself. So MPMPI cap belo to diagnoso	
nage 12 (Study selection criteria and process)	
Bullet point #3: For O1a and O2a, the reference	
tost TTMB is not intended only for MDMPI	
positive patients but also for MPMPI posative	
positive patients but also for MPMRI-negative	
Page 14 (Posults): "No systematic roview met	
the inclusion criteria" It is unclear why the	
systematic review by Drest et al. 2010	
(Cochrano collaboration) did not most the	
inclusion critoria	
Barriers:	
- Clinical criteria for the referral biopsy-naïve	
patients to MDMDI2	
- Primary objective: MPMPL as a tool to bionsy	
avoidance or targeted biopsy	
- Who is in charge of referring patients to	
MDMPL Urologists family physicians?	
- Budget impact of introducing MDMPL into the	
diagnosis nathway?	
- Is it cost-offective? Depending on the objective	
(hionsy avoidance or target bionsy) and the	
measures to follow negative MDMDI patients?	
Impact to the accessibility to MPL in general?	
- What are the measures to the follow up of	
- what are the measures to the follow-up of	
negative-mini patients (e.g. roa, MRI):	

Enablers:	
- Level of biopsy avoidance (25%?, 30%?, 49%?) in	
biopsy-naïve patients and the positive impacts	
on over diagnosis and overtreatment of PCa	
- Bringing together MPMRI expertise in a few	
hospital centres.	
- Support from international guidelines in uro-	
oncology	
- Demonstration of cost-effectiveness	
- Improving patient experience	
- Shared-decision making with respect to MPMRI	
results	
No significant barriers other than resource	No action required.
limitations (MRI and experienced operators) in	
Ontario. Much of this report is directed toward	
indications for prostate MRI which is most relevant	
to referring clinicians. Dissemination to urologists	
and GPs in Ontario would be beneficial.	
More guidance on what constitutes "experienced"	This is out of scope and will have to come from
operators would be helpful. More specific	further discussions with Ministry/CCO.
guidance on who can apply PBMRI would also be	
helpful: we have considered switching to BPMRI to	
expedite MRI exams given our long wait-times.	
however we decided not to given our uncertainty	
about the trade-offs and the experience level of	
our radiologists	
-Provincial access to MRI will be a problem	No action required.
-Costs of MRI will be high, so that will pose a	
problem as well	
-The need for a quality assurance program may	
impede widespread implementation unless it is	
rolled out in a timely manner	
While a quality assurance program before	Bevond scope
widespread adoption is beyond the scope of this	bejona scoper
document, such a program along with widespread	
MRI utilization may become a huge strain on	
resources. Are there recommendations to	
increase the number of magnets in the province?	
How many MRI's of the prostate do you estimate	
will occur once widely adopted. The quality	
assurance program will also be a huge initial step	
and resource prohibitive	
and resource prohibitive	

CONCLUSION

The final guideline recommendations contained in Section 2 and summarized in Section 1 reflect the integration of feedback obtained through the external review processes with the document as drafted by the GDG Working Group and approved by the GDG Expert Panel and the PEBC RAP.

References

- 1. Rouviere O, Puech P, Renard-Penna R, Claudon M, Roy C, Mege-Lechevallier F, et al. Use of prostate systematic and targeted biopsy on the basis of multiparametric MRI in biopsy-naive patients (MRI-FIRST): a prospective, multicentre, paired diagnostic study. Lancet Oncol. 2019;20(1):100-9.
- van der Leest M, Cornel E, Israel B, Hendriks R, Padhani AR, Hoogenboom M, et al. Head-tohead Comparison of Transrectal Ultrasound-guided Prostate Biopsy Versus Multiparametric Prostate Resonance Imaging with Subsequent Magnetic Resonance-guided Biopsy in Biopsynaive Men with Elevated Prostate-specific Antigen: A Large Prospective Multicenter Clinical Study. Eur Urol. 2019;75(4):570-8.
- 3. Ahmed HU, El-Shater Bosaily A, Brown LC, Gabe R, Kaplan R, Parmar MK, et al. Diagnostic accuracy of multi-parametric MRI and TRUS biopsy in prostate cancer (PROMIS): a paired validating confirmatory study. Lancet. 2017;389(10071):815-22.
- 4. Hansen NL, Barrett T, Kesch C, Pepdjonovic L, Bonekamp D, O'Sullivan R, et al. Multicentre evaluation of magnetic resonance imaging supported transperineal prostate biopsy in biopsynaive men with suspicion of prostate cancer. BJU Int. 2018;122(1):40-9.
- 5. Mortezavi A, Marzendorfer O, Donati OF, Rizzi G, Rupp NJ, Wettstein MS, et al. Diagnostic Accuracy of Multiparametric Magnetic Resonance Imaging and Fusion Guided Targeted Biopsy Evaluated by Transperineal Template Saturation Prostate Biopsy for the Detection and Characterization of Prostate Cancer. J Urol. 2018;200(2):309-18.
- 6. Alberts AR, Schoots IG, Bokhorst LP, Drost FH, van Leenders GJ, Krestin GP, et al. Characteristics of Prostate Cancer Found at Fifth Screening in the European Randomized Study of Screening for Prostate Cancer Rotterdam: Can We Selectively Detect High-grade Prostate Cancer with Upfront Multivariable Risk Stratification and Magnetic Resonance Imaging? Eur Urol. 2017;73(3):353-60.
- 7. Baco E, Rud E, Eri LM, Moen G, Vlatkovic L, Svindland A, et al. A Randomized Controlled Trial to Assess and Compare the Outcomes of Two-core Prostate Biopsy Guided by Fused Magnetic Resonance and Transrectal Ultrasound Images and Traditional 12-core Systematic Biopsy. Eur Urol. 2016;69(1):149-56.
- 8. Borkowetz A, Platzek I, Toma M, Renner T, Herout R, Baunacke M, et al. Evaluation of Prostate Imaging Reporting and Data System Classification in the Prediction of Tumor Aggressiveness in Targeted Magnetic Resonance Imaging/Ultrasound-Fusion Biopsy. Urol Int. 2017;99(2):177-85.
- 9. Borkowetz A, Hadaschik B, Platzek I, Toma M, Torsev G, Renner T, et al. Prospective comparison of transperineal magnetic resonance imaging/ultrasonography fusion biopsy and transrectal systematic biopsy in biopsy-naive patients. BJU Int. 2018;121(1):53-60.
- 10.Castellucci R, Linares Quevedo AI, Sanchez Gomez FJ, Diez Rodriguez J, Cogorno L, Cogollos Acuna I, et al. Prospective nonrandomized study of diagnostic accuracy comparing prostate cancer detection by transrectal ultrasound-guided biopsy to magnetic resonance imaging with subsequent MRI-guided biopsy in biopsy-naive patients. Minerva Urol Nefrol. 2017;69(6):589-95.
- 11.Filson CP, Natarajan S, Margolis DJ, Huang J, Lieu P, Dorey FJ, et al. Prostate cancer detection with magnetic resonance-ultrasound fusion biopsy: The role of systematic and targeted biopsies. Cancer. 2016;122(6):884-92.
- 12. Mannaerts CK, Kajtazovic A, Lodeizen OAP, Gayet M, Engelbrecht MRW, Jager GJ, et al. The added value of systematic biopsy in men with suspicion of prostate cancer undergoing multiparametric MRI-targeted biopsy. Urol Oncol. 2019;37(5):298 e1- e9.

- 13.Sarkar D, Nandi D, Gangoli S, Hicks J, Carter P. The decision of targeted, systematic or combined biopsy in a biopsy naive patient for the diagnosis of prostate cancer, can be made on the basis of multiparametric magnetic resonance imaging. J Clin Urol. 2019.
- 14. Zhang Q, Wang W, Zhang B, Shi J, Fu Y, Li D, et al. Comparison of free-hand transperineal mpMRI/TRUS fusion-guided biopsy with transperineal 12-core systematic biopsy for the diagnosis of prostate cancer: a single-center prospective study in China. Int Urol Nephrol. 2017;49(3):439-48.
- 15.Schünemann HJ, Mustafa R, Brozek J, Santesso N, Alonso-Coello P, Guyatt G, et al. GRADE Guidelines: 16. GRADE evidence to decision frameworks for tests in clinical practice and public health. J Clin Epidemiol. 2016;76:89-98.
- 16.Kasivisvanathan V, Rannikko AS, Borghi M, Panebianco V, Mynderse LA, Vaarala MH, et al. MRI-Targeted or Standard Biopsy for Prostate-Cancer Diagnosis. N Engl J Med. 2018;378(19):1767-77.
- 17. Porpiglia F, Manfredi M, Mele F, Cossu M, Bollito E, Veltri A, et al. Diagnostic Pathway with Multiparametric Magnetic Resonance Imaging Versus Standard Pathway: Results from a Randomized Prospective Study in Biopsy-naive Patients with Suspected Prostate Cancer. Eur Urol. 2017;72(2):282-8.
- 18. Hansen N, Patruno G, Wadhwa K, Gaziev G, Miano R, Barrett T, et al. Magnetic Resonance and Ultrasound Image Fusion Supported Transperineal Prostate Biopsy Using the Ginsburg Protocol: Technique, Learning Points, and Biopsy Results. Eur Urol. 2016;70(2):332-40.
- 19. Thompson JE, van Leeuwen PJ, Moses D, Shnier R, Brenner P, Delprado W, et al. The Diagnostic Performance of Multiparametric Magnetic Resonance Imaging to Detect Significant Prostate Cancer. J Urol. 2016;195(5):1428-35.
- 20. Mariotti GC, Costa DN, Pedrosa I, Falsarella PM, Martins T, Roehrborn CG, et al. Magnetic resonance/transrectal ultrasound fusion biopsy of the prostate compared to systematic 12-core biopsy for the diagnosis and characterization of prostate cancer: multi-institutional retrospective analysis of 389 patients. Urol Oncol. 2016;34(9):416 e9- e14.
- 21.Meng X, Rosenkrantz AB, Mendhiratta N, Fenstermaker M, Huang R, Wysock JS, et al. Relationship Between Prebiopsy Multiparametric Magnetic Resonance Imaging (MRI), Biopsy Indication, and MRI-ultrasound Fusion-targeted Prostate Biopsy Outcomes. Eur Urol. 2016;69(3):512-7.
- 22.Preisser FP, 2019 #1230}, Theissen L, Wenzel M, Humke C, Bodelle B, Kollermann J, et al. Performance of Combined Magnetic Resonance Imaging/Ultrasound Fusion-guided and Systematic Biopsy of the Prostate in Biopsy-naive Patients and Patients with Prior Biopsies. Eur Urol Focus. 2019.
- 23.Westhoff N, Baessler B, von Hardenberg J, Hetjens S, Porubsky S, Siegel F, et al. Systematic prostate biopsy still matters: A comprehensive analysis of MRI/TRUS-fusion targeted prostate biopsies across different indications. Urol Oncol. 2019;37(10):678-87.
- 24.Zalesky M, Stejskal J, Minarik I, Adamcova V, Babjuk M, Zachoval R. Cancer detection rates and inter-examiner variability of MRI/TRUS fusion targeted biopsy and systematic transrectal biopsy. Biomed pap Med Fac Univ Palacky, Olomouc, Czech Repub. 2019;10.
- 25.Tonttila PP, Lantto J, Paakko E, Piippo U, Kauppila S, Lammentausta E, et al. Prebiopsy Multiparametric Magnetic Resonance Imaging for Prostate Cancer Diagnosis in Biopsy-naive Men with Suspected Prostate Cancer Based on Elevated Prostate-specific Antigen Values: Results from a Randomized Prospective Blinded Controlled Trial. Eur Urol. 2016;69(3):419-25.
- 26.Simmons LAM, Kanthabalan A, Arya M, Briggs T, Barratt D, Charman SC, et al. Accuracy of Transperineal Targeted Prostate Biopsies, Visual Estimation and Image Fusion in Men Needing Repeat Biopsy in the PICTURE Trial. J Urol. 2018;200(6):1227-34.

- 27.Arsov C, Rabenalt R, Blondin D, Quentin M, Hiester A, Godehardt E, et al. Prospective randomized trial comparing magnetic resonance imaging (MRI)-guided in-bore biopsy to MRIultrasound fusion and transrectal ultrasound-guided prostate biopsy in patients with prior negative biopsies. Eur Urol. 2015;68(4):713-20.
- 28.Boesen L, Norgaard N, Logager V, Balslev I, Thomsen HS. Multiparametric MRI in men with clinical suspicion of prostate cancer undergoing repeat biopsy: a prospective comparison with clinical findings and histopathology. Acta Radiol. 2018;59(3):371-80.
- 29.Exterkate L, Wegelin O, Barentsz JO, van der Leest MG, Kummer JA, Vreuls W, et al. Is There Still a Need for Repeated Systematic Biopsies in Patients with Previous Negative Biopsies in the Era of Magnetic Resonance Imaging-targeted Biopsies of the Prostate? Eur Urol Oncol. 2019.
- 30. Lian H, Zhuang J, Wang W, Zhang B, Shi J, Li D, et al. Assessment of free-hand transperineal targeted prostate biopsy using multiparametric magnetic resonance imaging-transrectal ultrasound fusion in Chinese men with prior negative biopsy and elevated prostate-specific antigen. BMC Urol. 2017;17 (1) (no pagination)(52).
- 31. Hansen NL, Kesch C, Barrett T, Koo B, Radtke JP, Bonekamp D, et al. Multicentre evaluation of targeted and systematic biopsies using magnetic resonance and ultrasound image-fusion guided transperineal prostate biopsy in patients with a previous negative biopsy. BJU Int. 2017;120(5):631-8.
- 32.Pepe P, Garufi A, Priolo G, Pennisi M. Can 3-Tesla pelvic phased-array multiparametric MRI avoid unnecessary repeat prostate biopsy in patients with PSA < 10 ng/mL? Clin Genitourin Cancer. 2015;13(1):e27-30.
- 33.Pepe P, Garufi A, Priolo GD, Galia A, Fraggetta F, Pennisi M. Is it Time to Perform Only Magnetic Resonance Imaging Targeted Cores? Our Experience with 1,032 Men Who Underwent Prostate Biopsy. J Urol. 2018;200(4):774-8.
- 34.Pepe P, Garufi A, Priolo GD, Pennisi M. Multiparametric MRI/TRUS Fusion Prostate Biopsy: Advantages of a Transperineal Approach. Anticancer Res. 2017;37(6):3291-4.
- 35.Zhang M, Milot L, Khalvati F, Sugar L, Downes M, Baig SM, et al. Value of increasing biopsy cores per target with cognitive MRI-targeted transrectal US prostate biopsy. Radiology. 2019;291(1):83-9.
- 36.Dimitroulis P, Rabenalt R, Nini A, Hiester A, Esposito I, Schimmoller L, et al. Multiparametric Magnetic Resonance Imaging/Ultrasound Fusion Prostate Biopsy-Are 2 Biopsy Cores per Magnetic Resonance Imaging Lesion Required? J Urol. 2018;200(5):1030-4.
- 37.Kenigsberg AP, Renson A, Rosenkrantz AB, Huang R, Wysock JS, Taneja SS, et al. Optimizing the Number of Cores Targeted During Prostate Magnetic Resonance Imaging Fusion Target Biopsy. Eur Urol Oncol. 2018;1(5):418-25.
- 38.Stabile A, Giganti F, Kasivisvanathan V, Giannarini G, Moore CM, Padhani AR, et al. Factors Influencing Variability in the Performance of Multiparametric Magnetic Resonance Imaging in Detecting Clinically Significant Prostate Cancer: A Systematic Literature Review. Eur Urol Oncol. 2020.
- 39.Barentsz JO, Richenberg J, Clements R, Choyke P, Verma S, Villeirs G, et al. ESUR prostate MR guidelines 2012. Eur Radiol. 2012;22(4):746-57.
- 40.Muller BG, Shih JH, Sankineni S, Marko J, Rais-Bahrami S, George AK, et al. Prostate Cancer: Interobserver Agreement and Accuracy with the Revised Prostate Imaging Reporting and Data System at Multiparametric MR Imaging. Radiology. 2015;277(3):741-50.
- 41.Rosenkrantz AB, Ginocchio LA, Cornfeld D, Froemming AT, Gupta RT, Turkbey B, et al. Interobserver Reproducibility of the PI-RADS Version 2 Lexicon: A Multicenter Study of Six Experienced Prostate Radiologists. Radiology. 2016;280(3):793-804.
- 42.Westphalen AC, McCulloch CE, Anaokar JM, Arora S, Barashi NS, Barentsz JO, et al. Variability of the Positive Predictive Value of PI-RADS for prostate MRI across 26 Centres:

Experience of the Society of Abdominal Radiology Prostate Cancer Disease-focused Panel. Radiology.0(0):190646.

- 43.Sackett J, Shih JH, Reese SE, Brender JR, Harmon SA, Barrett T, et al. Quality of prostate MRI: Is the PI-RADS standard sufficient? Acad Radiol. 2020.
- 44.Esses SJ, Taneja SS, Rosenkrantz AB. Imaging Facilities' Adherence to PI-RADS v2 minimum technical standards for the performance of prostate MRI. Acad Radiol. 2018;25(2):188-95.
- 45. Abreu-Gomez J, Shabana W, McInnes MDF, O'Sullivan JP, Morash C, Schieda N. Regional Standardization of Prostate Multiparametric MRI Performance and Reporting: Is There a Role for a Director of Prostate Imaging? AJR Am J Roentgenol. 2019;213(4):844-50.
- 46.Alabousi M, Salameh JP, Gusenbauer K, Samoilov L, Jafri A, Yu H, et al. Biparametric vs multiparametric prostate magnetic resonance imaging for the detection of prostate cancer in treatment-naive patients: a diagnostic test accuracy systematic review and meta-analysis. BJU Int. 2019;124(2):209-20.
- 47.Kang Z, Min X, Weinreb J, Li Q, Feng Z, Wang L. Abbreviated biparametric versus standard multiparametric MRI for diagnosis of prostate cancer: A systematic review and meta-analysis. AJR Am J Roentgenol. 2019;212(2):357-65.
- 48.Kuhl CK, Bruhn R, Kramer N, Nebelung S, Heidenreich A, Schrading S. Abbreviated biparametric prostate MR imaging in men with elevated prostate-specific antigen. Radiology. 2017;285(2):493-505.
- 49.Bosaily AES, Frangou E, Ahmed HU, Emberton M, Punwani S, Kaplan R, et al. Additional Value of Dynamic Contrast-enhanced Sequences in Multiparametric Prostate Magnetic Resonance Imaging: Data from the PROMIS Study. Eur Urol. 2020.
- 50.Browman GP, Newman TE, Mohide EA, Graham ID, Levine MN, Pritchard KI, et al. Progress of clinical oncology guidelines development using the Practice Guidelines Development Cycle: the role of practitioner feedback. J Clin Oncol. 1998;16(3):1226-31.
- 51.Browman GP, Levine MN, Mohide EA, Hayward RS, Pritchard KI, Gafni A, et al. The practice guidelines development cycle: a conceptual tool for practice guidelines development and implementation. J Clin Oncol. 1995;13(2):502-12.
- 52.Brouwers MC, Kho ME, Browman GP, Burgers JS, Cluzeau F, Feder G, et al. AGREE II: advancing guideline development, reporting and evaluation in health care. CMAJ. 2010;182(18):E839-42.
- 53.Canadian Cancer Society's Steering Committee on Cancer Statistics. Canadian Cancer Statistics 2019. Toronto, ON: Canadian Cancer Society; 2019 [cited 2020 Mar 12]. Available from: http://www.cancer.ca/en/cancer-information/cancer-information/cancer-information/cancer-information/cancer-information/cancer-type/prostate/statistics/?region=on#ixzz33sAjdNe4.
- 54.Mozer P, Roupret M, Le Cossec C, Granger B, Comperat E, de Gorski A, et al. First round of targeted biopsies with magnetic resonance imaging/ultrasound-fusion images compared to conventional ultrasound-guided trans-rectal biopsies for the diagnosis of localised prostate cancer. BJU Int. 2014 epub (after 2015, it has a full page citation: BJU Int. 2015;115:50-7).
- 55.Schröder FH, Hugosson J, Roobol MJ, Tammela TL, Ciatto S, Nelen V, et al. Screening and prostate-cancer mortality in a randomized European study. N Engl J Med. 2009;360(13):1320-8.
- 56.Sonn GA, Chang E, Natarajan S, Margolis DJ, Macairan M, Lieu P, et al. Value of targeted prostate biopsy using magnetic resonance-ultrasound fusion in men with prior negative biopsy and elevated prostate-specific antigen. Eur Urol. 2014;65(4):809-15.
- 57.Barzell WE, Melamed MR. Appropriate patient selection in the focal treatment of prostate cancer: the role of transperineal 3-dimensional pathologic mapping of the prostate--a 4-year experience. Urology. 2007;70(6 Suppl):27-35.
- 58.Wegelin O, Exterkate L, van der Leest M, Kummer JA, Vreuls W, de Bruin PC, et al. The FUTURE Trial: A Multicenter Randomised Controlled Trial on Target Biopsy Techniques Based
on Magnetic Resonance Imaging in the Diagnosis of Prostate Cancer in Patients with Prior Negative Biopsies. Eur Urol. 2019;75(4):582-90.

- 59. Whiting PF, Rutjes AWS, Westwood ME, Mallett S, Deeks JJ, Reitsma JB, et al. QUADAS-2: A Revised Tool for the Quality Assessment of Diagnostic Accuracy Studies. Ann Int Med. 2011;155(8):529-36.
- 60.Higgins JP, Altman DG, Gotzsche PC, Juni P, Moher D, Oxman AD, et al. The Cochrane Collaboration's tool for assessing risk of bias in randomised trials. BMJ. 2011;343:d5928.
- 61.Sterne JA, Hernán MA, Reeves BC, Savović J, Berkman ND, Viswanathan M, et al. ROBINS-I: a tool for assessing risk of bias in non-randomised studies of interventions. BMJ. 2016;355:i4919.
- 62.Review Manager (RevMan) Version 5.3 [Computer program]. Version 5.3 for Windows. Copenhagen: The Nordic Cochrane Centre, The Cochrane Collaboration; . 2011.
- 63.Brown LC, Ahmed HU, Faria R, El-Shater Bosaily A, Gabe R, Kaplan RS, et al. Multiparametric MRI to improve detection of prostate cancer compared with transrectal ultrasound-guided prostate biopsy alone: the PROMIS study. Health technology assessment (Winchester, England). 2018;22(39):1-176.
- 64.Peltier A, Aoun F, Lemort M, Kwizera F, Paesmans M, Van Velthoven R. MRI-targeted biopsies versus systematic transrectal ultrasound guided biopsies for the diagnosis of localized prostate cancer in biopsy naive men. BioMed Res Int. 2015;2015 (no pagination)(571708).
- 65.Say R. MRI-Ultrasound Fusion Targeted Biopsy In Men With Prior Negative Prostate Biopsy For Prostate Cancer 2016.
- 66.Sidana A, Watson MJ, George AK, Rastinehad AR, Vourganti S, Rais-Bahrami S, et al. Fusion prostate biopsy outperforms 12-core systematic prostate biopsy in patients with prior negative systematic biopsy: A multi-institutional analysis. Urol Oncol. 2018;36(7):341 e1- e7.
- 67.Simmons LAM, Kanthabalan A, Arya M, Briggs T, Barratt D, Charman SC, et al. The PICTURE study: diagnostic accuracy of multiparametric MRI in men requiring a repeat prostate biopsy. Br J Cancer. 2017;116(9):1159-65.
- 68.Park BK, Park JW, Park SY, Kim CK, Lee HM, Jeon SS, et al. Prospective evaluation of 3-T MRI performed before initial transrectal ultrasound-guided prostate biopsy in patients with high prostate-specific antigen and no previous biopsy. AJR Am J Roentgenol. 2011;197(5):W876-81.
- 69. Delongchamps NB, Peyromaure M, Schull A, Beuvon F, Bouazza N, Flam T, et al. Prebiopsy magnetic resonance imaging and prostate cancer detection: comparison of random and targeted biopsies. J Urol. 2013;189(2):493-9.
- 70.Komai Y, Numao N, Yoshida S, Matsuoka Y, Nakanishi Y, Ishii C, et al. High diagnostic ability of multiparametric magnetic resonance imaging to detect anterior prostate cancer missed by transrectal 12-core biopsy. J Urol. 2013;190(3):867-73.
- 71.Wysock JS, Rosenkrantz AB, Huang WC, Stifelman MD, Lepor H, Deng FM, et al. A prospective, blinded comparison of magnetic resonance (MR) imaging-ultrasound fusion and visual estimation in the performance of MR-targeted prostate biopsy: the PROFUS trial. Eur Urol. 2014;66(2):343-51.
- 72. Pokorny MR, de Rooij M, Duncan E, Schroder FH, Parkinson R, Barentsz JO, et al. Prospective study of diagnostic accuracy comparing prostate cancer detection by transrectal ultrasound-guided biopsy versus magnetic resonance (MR) imaging with subsequent MR-guided biopsy in men without previous prostate biopsies. Eur Urol. 2014;66(1):22-9.
- 73.Pepe P, Garufi A, Priolo G, Candiano G, Pietropaolo F, Pennisi M, et al. Prostate cancer detection at repeat biopsy: Can pelvic phasedarray multiparametric MRI replace saturation biopsy? Anticancer Res. 2013;33(3):1195-200.
- 74.Hoeks CMA, Schouten MG, Bomers JGR, Hoogendoorn SP, Hulsbergen-Van De Kaa CA, Hambrock T, et al. Three-tesla magnetic resonance-guided prostate biopsy in men with

increased prostate-specific antigen and repeated, negative, random, systematic, transrectal ultrasound biopsies: detection of clinically significant prostate cancers. Eur Urol. 2012;62(5):902-9.

- 75. Vourganti S, Rastinehad A, Yerram NK, Nix J, Volkin D, Hoang A, et al. Multiparametric magnetic resonance imaging and ultrasound fusion biopsy detect prostate cancer in patients with prior negative transrectal ultrasound biopsies. J Urol. 2012;188(6):2152-7.
- 76.Cornelis F, Rigou G, Le Bras Y, Coutouly X, Hubrecht R, Yacoub M, et al. Real-time contrastenhanced transrectal US-guided prostate biopsy: diagnostic accuracy in men with previously negative biopsy results and positive MR imaging findings. Radiology. 2013;269(1):159-66.
- 77.Costa DN, Bloch BN, Yao DF, Sanda MG, Ngo L, Genega EM, et al. Diagnosis of relevant prostate cancer using supplementary cores from magnetic resonance imaging-prompted areas following multiple failed biopsies. Mag Reson Imaging. 2013;31(6):947-52.
- 78.Haffner J, Lemaitre L, Puech P, Haber GP, Leroy X, Jones JS, et al. Role of magnetic resonance imaging before initial biopsy: comparison of magnetic resonance imaging-targeted and systematic biopsy for significant prostate cancer detection. BJU Int. 2011;108(8 Pt 2):E171-8.
- 79. Abd-Alazeez M, Kirkham A, Ahmed HU, Arya M, Anastasiadis E, Charman SC, et al. Performance of multiparametric MRI in men at risk of prostate cancer before the first biopsy: a paired validating cohort study using template prostate mapping biopsies as the reference standard. Prostate Cancer Prostatic Dis. 2014;17(1):40-6.
- 80.Abd-Alazeez M, Ahmed HU, Arya M, Charman SC, Anastasiadis E, Freeman A, et al. The accuracy of multiparametric MRI in men with negative biopsy and elevated PSA level--can it rule out clinically significant prostate cancer? Urol Oncol. 2014;32(1):45 e17-22.
- 81.Klotz L, Chin J, Black PC, Finelli A, Anidjar M, Bladou F, et al. Comparison of Multiparametric Magnetic Resonance Imaging-Targeted Biopsy With Systematic Transrectal Ultrasonography Biopsy for Biopsy-Naive Men at Risk for Prostate Cancer: A Phase 3 Randomized Clinical Trial. JAMA Oncology. 2021.

Appendix 1: Definitions and Abbreviations

BPMRI = bi-parametric MRI

CI = confidence interval

CISPCa = clinically insignificant prostate cancer

CSPCa = clinically significant prostate cancer

MCT = multicentre trial

DCEMRI = dynamic contract enhanced MRI

MPMRI = multiparametric magnetic resonance imaging

MPMRI-TB = MPMRI-informed biopsy of MPMRI-positive lesions with no biopsy performed if the MPMRI shows no lesions. This can be performed using TRUS with cognitive fusion with MPMRI images, software assisted fusion with MPMRI images, or under direct MRI guidance in the bore of the MRI.

- NPV = negative predictive value
- PI-RAD = Prostate Imaging-Reporting and Data System

PPV = positive predictive value

PSA = prostate-specific antigen

RCT = randomized controlled trial

TRUS = transrectal ultrasound

TRUS-SB = TRUS-guided systematic biopsy (Note: although the high level evidence was based on trials using TRUS, systematic transrectal biopsy is roughly equivalent in cancer detection to systematic transperineal biopsy)

TTMB = template transperineal mapping biopsy

Appendix 2: Affiliations and Conflict of Interest Declarations

In accordance with the <u>PEBC Conflict of Interest (COI) Policy</u>, the guideline authors, MPMRI in the Diagnosis of CSPCa Expert Panel, and internal and external reviewers were asked to disclose potential conflicts of interest.

Name	Affiliation	Declarations of	
		interest	
Working Group		1	
Judy Brown	Health Research Methodologist	None declared	
	McMaster University, Department		
	of Oncology,		
	Program in Evidence-based Care,		
	Hamilton< Ontario		
Joseph Chin	Urologist	None declared	
	London Health Sciences Centre,		
	Victoria Hospital		
	London, Ontario		
Masoom Haider	Radiologist	See below	
	Toronto General Hospital		
	Department of Medical Imaging		
	Toronto, Ontario		
Andrew Loblaw	Radiation Oncologist	See below	
	Sunnybrook Health Sciences		
	Centre,		
	Toronto, Ontario		
Nathan Perlis	Urologist	None declared	
	Cancer Clinical Research Unit,		
	Princess Margaret Cancer Centre		
Nicola Schieda	Radiologist	None declared	
	Department of radiology,		
	University of Ottawa,		
	Ottawa, Ontario		
MPMRI in the Diagnosis of Clinically Sig	gnificant Prostate Cancer Expert Panel	(Expert Panel)	
	McGill University	None declared	
Armen Aprikian, urologist	Montreal, Quebec		
Glenn Bauman, Surgical Oncologist	Schulich School of Medicine &	see below	
	Dentistry, London, Ontario, Canada		
Rodney Breau, Surgical Oncologist	The Ottawa Hospital - General	None declared	
	Campus.		
	Ottawa, Ontario, Canada		
Sylvia Chang Radiologist	Vancouver General Hospital	None declared	
	Vancouver BC	None declared	
lulian Dobranowski, Radiologist	St Joseph's Healthcare Hamilton	None declared	
	McMaster University	None declared	
	Hamilton Ontario Canada		
Sangeet Ghai, Radiologist	Toronto General Hospital	See below	
	Toronto ON	See Below	
Laurence Klotz Urologist	University of Toronto	See helow	
	Sunnybrook Health Sciences Centre		
	Toronto Ontario Canada		
Scott Morgan Padiation Oncologgist	Padiation Oncology		
Scott molgan, Radiation Oncologsist	University of Ottawa		
Bobby Shayogan Urologist	St. Joseph's Healthcare Hamilton	See below	
bobby shayegan, urologist	St. Joseph S nearthcare Hamilton,	See below	
	memaster university	1	

	Hamilton, Ontario, Canada	
Report Approval Panel		
William Evans	Oncosynthesis Consulting Inc, Hamilton	None declared
Lorraine Elit	Juravinski Cancer Centre, Hamilton	None declared
Targeted Peer Review		
Bryan Donnelly	Urologist, Calgary Health Region Clinical Associate Professor, University of Calgary Co-Founder & Chairman, Prostate Cancer Institute, Calgary, ON	None declared
Ryan Carlson	Health Sciences North Regional Cancer Program Sudbury, ON	See below

(M. Haider) Have read prostate MRI in clinical practice so will see increase demand and work/revenue if this is approved; PI on Multiple trials in mpMRI. Can review my CV if you wish a full list; Author on relevant publications 1: Padhani AR, Haider MA, Villers A, Barentsz JO. Multiparametric Magnetic Resonance Imaging for Prostate Cancer Detection: What We See and What We Miss. Eur Urol. 2019 May;75(5):721-722. doi: 10.1016/j.eururo.2018.12.004. Epub 2018 Dec 16. PubMed PMID: 30563723. 2: Barentsz JO, Weinreb JC, Verma S, Thoeny HC, Tempany CM, Shtern F, Padhani AR, Margolis D, Macura KJ, Haider MA, Cornud F, Choyke PL. Synopsis of the PI-RADS v2 Guidelines for Multiparametric Prostate Magnetic Resonance Imaging and Recommendations for Use. Eur Urol. 2016 Jan;69(1):41-9. doi: 10.1016/j.eururo.2015.08.038. Epub 2015 Sep 8. PubMed PMID: 26361169 (part of PI-RAD committee); PubMed Central PMCID: PMC6364687 reviewed his declaration and the professional publications noted by Dr. Haider (re publications: The PEBC do not find that the opinions expressed represent a clear conflict with respect to this project, and waive the requirement preventing him from being the lead author).

(A. Loblaw) received grants from Sanofi, Paladin; PI on two clinical trial (ASIST, PRECISE) looking at MRI in active surveillance and prediagnosis; Gave advice/guidance to multiple news agencies about prostate cancer treatment and side effects.

(G. Bauman) Invited speaker for Bayer; DOD grant investigating mpMRI and PSMA PET in localized prostate cancer, co-PI; Publications: Multi-modality Imaging (PCa) Using Sodium MRI and PSMA PET in Men Pre-prostatectomyNCT04053842, PET/MRI for Men Being Considered for Radiotherapy for Suspected Prostate Cancer Recurrence Post-ProstatectomyNCT02131649, Advanced Prostate Imaging of Recurrent Cancer After RadiotherapyNCT02793284, Multi-modality Prostate Cancer Image Guided InterventionsNCT04009174, Prospective Study Using Hybrid PET/MRI to Evaluate Men With Suspected Recurrence Following Treatment for Prostate Cancer NCT0180423; Published editorial: 1: Trabulsi EJ, Rumble RB, Jadvar H, Hope T, Pomper M, Turkbey B, Rosenkrantz AB; My primary research focus is on advanced prostate cancer imaging applications including PET and MRI.

(L. Klotz) Research support for clinical trial from Exact Imaging Inc.,

(S. Morgan) Consultation provided to Astellas: advisory board member, Bayer: advisory board member, Janssen: advisory board member, consulting (Genitourinary Research Consortium)

(S Chai) I have received honorarium from Exact Imaging in 2016 to speak at Milan, Italy EMUC meet; received grants from Insightec Ltd, Haifa, Exact Imaging, Markham; Prinicap investigaor for MR guided focal laser ablation MR guided FUS therapy; publications: Comparison of mpMRI to high resolution TRUS (29MHz) for detecting PCa in biopsy naiive Area: My main area of clinical and research interest is prostate imaging and intervention, from TRUS Bx, high resolution US to mpMRI and Focal therapy under MRI guidance.

(B Shayagen) My focus in clinical practice and research is principally in prostate cancer. However, none of my activities or interests conflict in any way with this document

(R Carlson) On Janssen and Ferring advisory boards. Travel for conferences (Jansen)

Appendix 3: Literature Search Strategy

Medline

- 1 (prostat\$ adj2 (cancer\$ or neoplasm\$ or adenocarcinom\$ or carcinom\$ or malig\$ or tumo?r\$)).mp.
- 2 (magnetic resonance imag\$ or magnetic resonance spectroscop\$).mp.
- 3 (dynamic adj4 (MRI or magnet\$)).mp.
- 4 (diffusion weight\$ adj3 (MRI or magnet\$)).mp.
- 5 Magnetic Resonance Imaging/ or Magnetic Resonance Spectroscopy/ or Nuclear Magnetic Resonance Imaging/
- 6 (MRI or MRSI or DWI-MRI or DW-MRI or DCE-MRI).mp.
- 7 ((T1-weighted or T2-weighted) adj3 imag\$).mp.
- 8 (nmr imaging or MRS).mp.
- 9 ((NMR adj3 imag\$) or NMRI).mp.
- 10 ((MR adj3 imag\$) or (MR adj3 spectroscop\$)).mp.
- 11 or/2-10
- 12 (case report\$ or editorial\$ or comment\$ or letter\$).pt.
- (comment or letter or editorial or note or erratum or short survey or news or newspaper article or patient 13 education handout or case report or historical article).pt.
- 14 or/12-13
- 15 (1 and 11) not 14
- 16 Animal/ not Human/
- 17 15 not 16
- 18 limit 15 to (english language and yr="2013 -Current")
- 19 remove duplicates from 18

Embase

- 1 (prostat\$ adj2 (cancer\$ or neoplasm\$ or adenocarcinom\$ or carcinom\$ or malig\$ or tumo?r\$)).mp.
- 2 exp prostate cancer/ or exp prostate tumor/

3 1 or 2

- 4 (magnetic resonance imag\$ or magnetic resonance spectroscop\$).mp.
- 5 (dynamic adj4 (MRI or magnet\$)).mp.
- 6 (diffusion weight\$ adj3 (MRI or magnet\$)).mp.
- 7 (MRI or MRSI or DWI-MRI or DW-MRI or DCE-MRI).mp.
- 8 (nmr imaging or MRS).mp.
- 9 ((NMR adj3 imag\$) or NMRI).mp.
- 10 ((MR adj3 imag\$) or (MR adj3 spectroscop\$)).mp.
- 11 ((T1-weighted or T2-weighted) adj3 imag\$).mp.

12 or/4-11

- 13 3 and 12
- 14 (case report\$ or editorial\$ or comment\$ or letter\$).pt.
- (editorial or note or letter erratum or short survey or abstract).pt. or abstract report/ or letter/ or case 15 study/
- 16 14 or 15
- 17 13 not 16
- 18 Animal/ not Human/
- 19 17 not 18
- 20 limit 19 to (english language and yr="2013 -Current")

Appendix 4: PRISMA Flow Diagram

Appendix 5: Risk of Bias Assessments

~, <u> </u>	Risk of Bias		······································	<u>,</u>	Applicability Concerns		
Study	Patient selection	Index test	Reference standard	Flow and timing	Patient selection	Index test	Reference Standard
Ahmed, 2017 (Q1a)	Low	Low	Low	Low	Low	Low	Low
Hansen, 2016 (Q1a, Q2a)	Low	Low	Unclear	Low	Low	Low	Low
Hansen, 2017 (Q2a)	Unclear	Low	Unclear	Low	Low	Low	Low
Hansen, 2018 (Q1a)	Low	Low	Moderate	Low	Low	Low	Low
Mortezavi, 2018 (Q1a, Q2a)	Low	Low	Moderate	Low	Low	Low	Low
Pepe, 2015 (Q2a)	Unclear	Low	Low	Unclear	Low	Low	Low
Pepe, 2017 (Q2a)	Unclear	Low	Low	Unclear	Low	Low	Low
Pepe, 2018 (Q2a)	Unclear	Low	Low	Unclear	Low	Low	Low
Simmons, 2018 (Q2a)	Low	Low	Low	Low	Low	Low	Low
Thompson, 2016 (q1a)	Low	Low	Unclear	Unclear	Low	Low	Low

a) Quality assessment using QUADAS-2 - diagnostic Studies comparing MPMRI(±TB) with reference standard (TTMB)

b) Quality assessment for RCTS using the RISK OF BIAS Tool.

Study	Random	Allocation	Blinding of	Blinding of	Incomplete	Selective	Comments
	sequence	concealment	participants and	outcome	outcome data	reporting	
	generation		personnel	assessment			
Kasivisvanathan,	Low	Low	NA	Low	Low	Low	
2018 (Q1b)							
Porpiglia, 2017	Low	Low	NA	Unclear	Unclear	Low	
(Q1b)							
Tonttila, 2016	Low	Unclear	NA	Low	Unclear	Low	
(Q1c)							
Weglin, 2019	Low	Low	NA	Low	Low	Low	
(Q3b)							

c) Quality Assessment For Non-randomized studies using ROBINS (ACROBAT-NRSI) Risk of Bias Tool for Non-randomized Studies (Intervention Studies).

Study	Overall	Confounding	Selection of	Measurement	Departure	Missing data	Measurement	Selection of
	rating^		participants	Of	from		of outcomes	reported
				interventions	intervention			results
Alberts, 2017	Moderate	Low	Low	Low	Low	Moderate	Moderate (no	Low
(Q1b,Q2b)						(large #	RS)	
						missing data)		

Study	Overall rating*	Confounding	Selection of participants	Measurement of interventions	Departure from intervention	Missing data	Measurement of outcomes	Selection of reported results
Arsov, 2015 (Q2b)	Moderate	Low	Moderate	Low	Low	Low	Moderate (no RS)	Low
Baco, 2016 (Q1bc)	Moderate	Low	Low	Moderate	Low	Low	Moderate (no RS)	Low
Boesen, 2018 (Q2bc)	Low	Low	Low	Low	Low	Low	Moderate (no RS)	Low
Borkowetz, 2017 (Q1bc,Q2bc)	Moderate	Low	Moderate (unclear if consecutive)	Moderate (different PI- RAD evaluations)	Moderate	Low	Moderate (outcome assessor not blinded, no RS)	moderate
Borkowetz, 2018 (Q1bc)	Moderate	Low	Low	Moderate (different PI- RAD evaluations)	Moderate	Low	Moderate (outcome assessor not blinded, no RS)	Moderate
Castelluci, 2017 (Q1bc)	Moderate	Low	Low	Moderate (PI- RAD V.1 used)	Low	Low	Moderate (Unclear if outcome assessors blinded, no RS)	Low
Exterkate, 2020 (Q2bc)	Low	Low	Low	Low	Low	Low	Moderate (no RS)	Low
Filson, 2016 (Q1bc,Q2bc)	Moderate	Low	Low	Moderate	Low	Low	Moderate (no RS)	Low
Lian, 2016 (Q2bc)	Moderate	Low	Low	Moderate	Low	Low	Moderate (no RS)	Low
Mannaerts, 2019 (Q1b,Q2b)	Moderate	Low	Low	Moderate	Moderate	Moderate	Moderate (Unclear whether outcome assessors blinded)	Low

Study	Overall rating*	Confounding	Selection of participants	Measurement of interventions	Departure from intervention	Missing data	Measurement of outcomes	Selection of reported results
Mariotti, 2016 (Q1b,Q2b)	High	Low	High (retrospectiv e)	Moderate	Moderate	Low	Moderate (unclear if RS separate from index)	Low
Meng, 2015 (Q1b,Q2b)	High	Low	High (retrospectiv e)	Moderate	Moderate	Low	Moderate (Unclear whether outcome assessors blinded)	Low
Preisser, 2019 (Q1bc,Q2bc)	High	Low	High (retrospectiv e)	Moderate	Low	Low	Moderate (no RS)	Mopderate
Rouviere, 2019 (Q1bc)	Low	Low	low	Low	Low	Low	Moderate (no RS)	Low
Sakar, 2019 (Q1bc)	Moderate	Low	Moderate	unclear	Moderate	Low	Moderate (no RS)	Low
Say, 2016 (Q2bc)	High	Low	High (retrospectiv e)	High (Unclear if TB done without knowledge of TRUS-SB)	Moderate	Moderate	Moderate (no RS)	Moderate
Sidana, 2018 (Q2b)	High	Low	High (retrospectiv e, unclear if consecutive)	Moderate	Moderate	Moderate	Moderate (no RS)	Low
Van der Leest, 2018 (Q1bc)	Low	Low	Low	Low	Low	Low	Moderate (no RS)	Low
Westoff, 2019 (Q1bc,Q2bc)	High	Low	High (retrospectiv e)	Moderate	Low	Low	Moderate (no RS)	Low
Zalesky, 2019 (Q1bc,Q2bc)	High	Low	High (retrospectiv e)	Moderate	Low	Low	Moderate (no RS)	Low

Study	Overall	Confounding	Selection of	Measurement	Departure	Missing data	Measurement	Selection of
	rating*		participants	of	from		of outcomes	reported
				interventions	intervention			results
Zhang, 2017	Moderate	Low	Low	Moderate	Low	Low	Moderate (no	Low
(Q1bc)							RS)	
*If only one "moderate" rating and the rest low, the study received a "low" rating. If two or more "moderate" ratings, studies received overall								
"moderate" rating. If one or more "high" assessment, the study received an overall "high" rating.								

Appendix 6: Adverse Events

Author, year	Procedure	Side effect [missing data]	Number (%)
Ahmed,	MPMRI	Pain. Discomfort	2% (11/561)
2017		Allergic reaction to contrast medium	<1% (1/560)
	Combined biopsy	Pain/discomfort	64% (362/563)
	procedures (TRUS-SB	Dvsuria	46% (256/559)
	& TPM)	Hematuria	67% (380/565)
	,	Hematospermia	55% (291/525)
		Erectile dysfunction (requiring	14% (76/528)
		medication, injection therapy or devices)	· · · ·
		Urinary tract infection (only if confirmed	6% (32/565)
		by a lab test)	
		Systemic urosepsis	1% (8/568)
		Acute urinary retention	10% (58/564)
		Symptoms associated with general/spinal anesthetic	4% (19/533)
Alberts,	Biopsy complications	Postbiopsy fever	5.6% (19/337)
2018 GRP 1	(6-core TRUS-Bx [Grp	Hospital admission for of postbiopsy fever	3.3% (11/337)
(n=179) Grp 2	1] MRI, 12-core	Hospital admission for urosepsis	Grp 1 4%
(n=158)	TRUS-Bx, and fusion		(6/179),
	TBX [Grp 2])		Grp 2. 3.2%
		Hernital admission for urinany rotantian	(5/158)
		Hospital admission for unnary recention	(1/179)
		Hospital admission for transient ischemic	Grp 2 <1%
		attack 1 day post-biopsy	(1/158)
Arsov, 2015	Major complication	Febrile prostatitis requiring hospitalization	Grp 1.9%
[G1 104, G2	rate post biopsy (IB-	and intravenous antibiotic therapy.	(2/104), Grp 2
106])	GB alone [Grp 1] and		1.0% (1/106)
	FUS-GB + TRUS-GB	No prostatic abscess, major bleeding, or	
	[Grp 2])	other sever adverse events requiring	
Castellucci	"No major complicatio	surgical intervention occurred.	
2017		is were reported after the procedure.	
(BN=168)			
Kasivisvanat	MPMRI±TB (BN=224)	Discomfort Med. (IOR)	2 (0-4)
han, 2019	Patient-reported	Pain Med. (IQR)	1 (0-3)
	immediate post-		· · · ·
	intervention		
	complications		
	MPMRI±TB (BN=212)	Fever	4.2% (9/212)
	Patient-reported 30-	Blood in urine	30.2% (64/212)
	day post-intervention	Blood in semen	32.1% (68/212)
	complications	Blood in the stools or from the back	14.2% (30/212)
		passage	
		Acute unnary retention	1.4% (3/212)
			10.0% (23/212)
		Urinary incontinence	0.1/0 (13/212) 2.4% (5/212)
		Pain at site of procedure	12.4% (J/ZIZ)
		Men for whom another procedure would	12.7% (27/212)
		be a major problem	
		Serious adverse events	1.6% (4/212)

Author, year	Procedure	Side effect [missing data]	Number (%)				
	MPMRI±TB (BN=212)	Adverse events	0.8 (2/212)				
	Investigator-reported	Sepsis related to intervention	0.4% (1/212)				
	Adverse events	Prostatitis related to intervention	1.2% (3/212)				
		Pulmonary embolism, unrelated to	0.4% (1/212)				
		intervention					
		Death (secondary to pulmonary metastasis	0.4% (1/212)				
		of known squamous cell carcinoma)					
Mannaerts,	MPMRI-TBx+TRUS-SB	Prostatitis	4.7% (10/2121)				
2019	(N=242)	Urinary retention	0.4% (1/212)				
		Gross rectal bleeding	0.4% (1/212)				
		Gross hematuria	0.4% (1/212)				
Pepe, 2018	"No patient had signifi	cant complications (Clavien-Dindo grade I) of	prostate biopsy				
•	which needed hospital	admission. Moreover, the mpMRI procedure v	vas well tolerated				
	and successfully perfor	formed in all case."					
Porniglia	"The study is ongoing t	o examine the remaining secondary end poin	ts "				
2017							
Rouviere,	MPMRI-TB+TRUS-SB	Grade 3 prostatitis	3				
2019	(n=NR)	Grade 3 urinary retention with hematuria	1				
	Immediate post						
	intervention						
Simmons,	TTPM adverse events	Serious adverse events	3.6% (9/236)				
2017	(assessed med. 38±56	Hematuria	93.2%				
	post biopsy (n=236)		(220/236)				
	(No serious adverse	Poor urine flow	45.8% (108/236)				
	events resulting from	Urinary retention	23.7% (56/236)				
	mpMRI)	Urinary tract infection	9.8% (23/236)				
		Perineal skin infection	3.4% (8/236)				
		Rectal pain	25.1% (59/236)				
		Perineal pain	40.3% (95/236)				
		Perineal bruising	57.6% (136/236)				
		De novo erectile dysfunction	20.8% (49/236)				
Tonttila,	MPMRI-TRUS fusion	One patient collapsed after the biopsy					
2016		procedure and experienced a minor head					
	—	injury.	20((20 ((24)				
VanderLeest	Iransrectal in-bore	Complicated urinary tract infection	3% (20/626)				
, 2016	(N=626) (50% [20/41]	(UTI/urosepsis)					
	TRUSCE only in the	Lower unnary tract symptoms	1.5% (9/626)				
		Bleeding	1.3% (8/626)				
	aroup including	Vasovagal episode	<1% (3/626)				
	2.9% (nine of 309)	I ransient ischemic attack after	<1% (1/626)				
	with complicated	modication					
	UTI/urosepsis)						
Zhang, 2017	MPMRI/TRUS	"No serious post-biopsy complication (include	ling				
,,, /	fusion+TRUS-SB	acute urinary retention, infection, etc.) was	s noted in all				
		patients with biopsv."					
Adverse event	s not presented: Baco.	2016; Boesen, 2017; Boesen, 2018; Borkowet;	z, 2018;				
Borkowetz, 20	17a; Borkowetz, 2017b: I	Dal Moro, 2019; Delongchamps, 2016; Filson.	2016; Hansen,				
2016; Hansen.	2018; Hansen, 2017; Lia	n, 2017; Mariotti, 2016; Meng, 2016; Morteza	vi, 2018; Peltier.				
2015; Pepe, 20	15; Pepe, 2017; Say, 20	16; Schouten, 2017; Sidana, 2018; Thompson,	2016				

Appendix 7: Supplementary Data (pre-2015 added)

Diagnostic Accuracy of MPMRI alone (compared to reference Standard) by definitions of clinically significant prostate cancer (pre-2015 and updated study data) for biopsy-naïve patients - Q1a

Diagnostic Accuracy of MPMRI (alone) in biopsy naïve patients (compared with reference standard)									
Study	Index test	Positive MRI	Reference standard	CSPCa	Sensitivity	Specificity	PPV (95%	NPV	
(prevalence of				definition	(95% CI)	(95% CI)	CI)	(95% CI)	
CSPCa)									
Update study da	ta GS≥ 3+4 - biop	osy naïve							
Hansen, 2016	T2W1+ DWI+	PI-RAD v1 ≥3	24-core systematic biopsy	GS 7 to 10	92.9%	29.2%	45.9%	86.4%	
n=107	DCE	of 5	according to the Ginsburg		(85,101)	(18,40)	(35,56)	(72,101)	
(39%)			TRUS-SB protocol						
Hansen, 2018	T2W1+ DWI+	PI-RAD v1 ≥3	18-24 core systematic TP biopsy	GS 7 to 10	87.8%	45.3%	60.2%	79.7%	
n=807	DCE	of 5	according to the Ginsburg		(85,91)	(41,50)	(56,64)	(75,85)	
(49%)	(ALL)		TRUS-SB protocol						
Pre-2015 studies	s GS≥ 3+4 - biop	sy-naïve							
Komai 2013 (24%)	T2WI+DWI+DCE	≥3 of 5	26-core biopsy (12 transrectal	GS ≥4+3 or CL ≥5	86%	72%	50%	94%	
[70]	for 270 pts; T2WI	scoreTRUS-SB	+14 transperineal)	mm	(78–94)	(67–78)	(41–58)	(91–98)	
	+DWI for 54 pts								
Abd-Alazeez, 2014	T2WI+	≥3 of 5		GS ≥7	93%	21%	24%	91%	
(21%)	DWI+DCE (258	scoreTRUS-SB			(86–100)	(15–27)	(18–29)	(84–99)	
	half prostates								
	from 129 pts)								

Diagnostic Accuracy of MPMRI alone (compared with reference Standard) by definitions of clinically significant prostate cancer (pre-2015 and updated study data) for previously negative patients - Q2a

Study	Index test	Positive MRI	Reference standard	CSPCa	Sensitivity	Specificity	PPV (95%	NPV
(prevalence of				definition	(95% CI)	(95% CI)	CI)	(95% CI)
CSPCa)								
Update study data GS≥ 3+4 - previously negative								
Hansen, 2016	T2W1+ DWI+	PI-RAD v1 ≥3	24-core TRUS-SB according to	GS 7 to 10	90.1%	38.8%	35.8%	91.2%
n=295	DCE	of 5	the Ginsburg TRUS-SB protocol		(84,110)	(32,45)	(29,42)	(85,97)
(27%)								
Hansen, 2017	T2W1+ DWI+	PI-RAD v1&2	18-24 core TRUS-SB TP	GS 7 to 10	92.6%	39.3%	40.2%	92.4%
n=487	DCE	≥3 of 5	according to the Ginsburg TRUS-		(88,97)	(34,45)	(35,45)	(88,97)
(31%)			SB protocol					
Pepe, 2015 n=100	T2W+ DWI+	PI-RAD v1	TP saturation biopsy	GS ≥7	100%	100%	100%	100%
(13%)	DCE+spectroscop	≥4 of 5			(100,100)	(100,100)	(100,100)	(100,100)
	у							
Pepe, 2018 n=1032	T2W1+DWI+DCE	PI-RAD v1&2	TP saturation biopsy	GS≥ 3+4	83.8%	72.4%	52.1%	92.6%
(26%)		≥3 of 5			(79,88)	(69,76)	(47,57)	(90,95)
Pre-2015 studies	GS≥ 3+4 - previ	iously negativ	e					

Study (prevalence of CSPCa)	Index test	Positive MRI	Reference standard	CSPCa definition	Sensitivity (95% Cl)	Specificity (95% Cl)	PPV (95% Cl)	NPV (95% CI)
Pepe 2013 (18%) [73]	T2WI DWI DCE MRSI Combination	T2WI: low signal intensity; DCE: early and intense enhancement; MRSI: choline/ Citrato ≥3 SD above mean healthy value	28 saturation core biopsy + 3–4 core MRI-TB	GS ≥7	100% (100—100)	50% (38–62)	30% (17–44)	100% (100—100)
Abd-Alazeez and Ahmed 2014 ^a [80] (21%)	T2WI+ DWI+DCE (108 half prostates from 54 pts)	≥3 of 5 scoreTRUS-SB	5mm template prostate mapping biopsy + MRI software MRI-US fusion (≥20 cores)	GS ≥7	87% (73–100)	42% (32–53)	29% (18–40)	92% (84–100)

Guideline 27-2 Version 2

	MPMR	-TB	TRUS	-SB		Risk Difference	Risk Difference
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% Cl	M-H, Random, 95% Cl
1.1.1 Software fusion							
Alberts, 2017	14	74	15	74	2.8%	-0.01 [-0.14, 0.11]	
Baco, 2016	33	86	31	86	2.4%	0.02 [-0.12, 0.17]	
Borkowetz, 2017	54	133	47	133	3.2%	0.05 [-0.06, 0.17]	_
Borkowetz 2018	81	214	74	214	4.1%	0.03 [-0.06, 0.12]	_ _
Delongcamps 2013(Grp2[SElpre-2015)	33	131	26	131	3.7%	0.05 (-0.05 0.15)	_ _
Delongchamps, 2013 (Grp3[SE2]pre-2015)	33	133	19	133	3 9%		
Fileon 2016	100	370	02	370	5.0%	0.02 L0.05 0.09	
Mannaarte 2010	0.0	204	116	204	1 7 %	-0.07[-0.05]	
Marinteina, 2013 Marintti 2016	112	204	04	234	4.7.00		
Manou, 2010 Mong 2016	00	240	74	240	4.370	0.12 [0.03, 0.20]	
Meny, 2010 Mozer 2014/(RElare 2016)	03	282	/4 50	292	4.370	0.05 [-0.02, 0.12]	
Mozer,2014((orjpre-2015)	70	102	20	102	3.470 3.30V	0.00[-0.00, 0.17]	
Preisser, 2019	13	141	10	141	3.270	-0.02 [-0.14, 0.10]	
Weston, 2019 Subtotal (05% CI)	115	307	121	307	4.7%	-0.02 [-0.10, 0.06]	
Subtotal (95% CI)		2001		2001	50.1%	0.05 [-0.00, 0.06]	
l otal events	897		832				
Heterogeneity: Tau* = 0.00; Chi* = 17.34, dt = Test for overall effect: Z = 1.81 (P = 0.07)	12 (P = 0.	.14); I*=	31%				
1.1.2 Cognitive fusion							
Castellucci, 2017	30	168	33	168	4.4%	-0.02 [-0.10, 0.07]	-+
Delongcamps,2013(Grp1[CF]pre-2015)	18	127	18	127	4.3%	0.00 [-0.09, 0.09]	-+-
Hafner, 2011 ([CF]pre-2015)	239	555	240	555	5.6%	-0.00 [-0.06, 0.06]	-
Zalesky, 2019	64	211	84	211	4.1%	-0.09 [-0.19, -0.00]	
Zhang, 2017	59	224	35	224	4.8%	0.11 [0.03, 0.18]]
Subtotal (95% CI)		1285		1285	23.1%	0.00 [-0.06, 0.06]	•
Total events	410		410				
Test for overall effect: Z = 0.04 (P = 0.97)	4 (r – 0.0	2),1 =1	07.10				
1.1.3 In-bore							
Pokorny'2014([IB]pre-2015)	93	223	79	223	4.1%	0.06 [-0.03, 0.15]	+
Van der Leest, 2019	159	626	146	626	6.1%	0.02 [-0.03, 0.07]	.
Subtotal (95% CI)		849		849	10.2%	0.03 [-0.01, 0.07]	◆
Total events	252		225				
Heterogeneity: Tau ² = 0.00; Chi ² = 0.66, df = 1 Test for overall effect: Z = 1.39 (P = 0.16)	(P = 0.42); I² = 0'	%				
1.1.4 Software or cognitve fusion							
Rouviere 2019	81	251	75	251	4.5%	0.02[-0.06_0.10]	_ _
Wysock 2014/(SE/CE)pre-2015)	22	67	22	67	21%	0.00[-0.16]	
Subtotal (95% Cl)	22	318	22	318	6.6%	0.02 [-0.05, 0.09]	•
Total events	102		Q7	5.5	5.570		Ť
Heterogeneity: Tau² = 0.00; Chi² = 0.07, df = 1 Test for overall effect: Z = 0.52 (P = 0.61)	(P = 0.79); I² = 0'	37 Xo				
1.1.5 BCTs							
Vacivievanathan 2019	0.6	252	G 4	240	150	0.10.004.0.001	
Nasivisvallallall, 2010 Devis 2011 /(OEleve 2015)	90	202	04	248	4.0%	0.12 [0.04, 0.20]	
Fark, 2011 ([CF]pre-2015) Demialia: 2017	11	44	40	41	2.4%	0.20 [0.06, 0.35]	
Forpigna, 2017 Subtotal (95% CI)	47	107	19	105	3.1%	0.20 [0.14, 0.38]	
Subtotal (33% Cl)	450	403	0.5	594	10.0%	0.10[0.09, 0.27]	-
i utai events Heterogeneity: Tau² = 0.00; Chi² = 3.84, df = 2 Test for overall effect: Z = 4.00 (P < 0.0001)	153 (P = 0.15); I² = 48	85 3%				
Total (95% CI)		5396		5377	100 004	0.04.10.04.0.071	· · · · · · · · · · · · · · · · · · ·
Total (95% CI)	1045	5386	1010	5377	100.0%	0.04 [0.01, 0.07]	•
Total (95% CI) Total events Jataresensity Taulin C 20: Ohilin 50 10 10	1815	5386	1649	5377	100.0%	0.04 [0.01, 0.07]	
Total (95% CI) Total events Heterogeneity: Tau ² = 0.00; Chi ² = 56.49, df =	1815 24 (P = 0.	5386 .0002);	1649 ²= 58%	5377	100.0%	0.04 [0.01, 0.07]	-1 -0.5 0 0.5

Appendix 7 - Figure 2.1: (<u>MPMRI-TB vs. TRUS-SB</u>) Risk differences in detection of <u>clinically significant</u> prostate cancer for biopsy-naïve men

Guideline 27-2 Version 2

	MPMRI	TB	TRUS-	SB		Risk Difference	Risk Difference
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% Cl	M-H, Random, 95% Cl
2.1.1 Software fusion							
Alberts, 2017	3	84	4	84	7.4%	-0.01 [-0.07, 0.05]	
Arsov, 2015	27	104	26	104	2.9%	0.01 [-0.11, 0.13]	
Borkowetz, 2017	139	445	106	445	7.7%	0.07 [0.02, 0.13]	
Cornelis, 2013 ([SF]pre-2015)	12	178	9	178	9.1%	0.02 [-0.03, 0.07]	+
Filson, 2016	60	324	48	324	7.8%	0.04 [-0.02, 0.09]	
Lian, 2017	22	101	13	101	3.6%	0.09 [-0.01, 0.19]	
Mannaerts, 2019	19	159	23	159	5.8%	-0.03 [-0.10, 0.05]	
Mariotti, 2016	32	143	18	143	4.6%	0.10 [0.01, 0.19]	
Meng, 2016	28	172	16	172	6.2%	0.07 [-0.00, 0.14]	
Say, 2016	33	143	27	143	4.1%	0.04 [-0.05, 0.14]	
Sonn, 2014 ([SF]pre-2015)	21	105	15	105	3.7%	0.06 [-0.04, 0.16]	
Vourganti, 2012 ([SF]pre-2015)	42	195	31	195	5.5%	0.06 [-0.02, 0.13]	+
Westoff, 2019	65	210	64	210	4.6%	0.00 [-0.08, 0.09]	-
Subtotal (95% CI)		2363		2363	73.0%	0.04 [0.02, 0.06]	•
Total events	503		400				
Heterogeneity: Tau ² = 0.00; Chi ² =	= 12.77, di	f=12 (P = 0.39)	; I ² = 69	6		
Test for overall effect: Z = 3.38 (P	= 0.0007)						
2.1.2 Cognitive fusion							
Costa, 2013 ([CF]pre-2015)	9	38	2	38	1.9%	0.18 [0.03, 0.34]	
Sidana, 2018	205	779	147	779	10.4%	0.07 [0.03, 0.12]	-
Zalesky, 2019	47	174	44	174	4.3%	0.02 [-0.08, 0.11]	_ _
Subtotal (95% CI)		991		991	16.6%	0.07 [0.01, 0.14]	◆
Total events	261		193				
Heterogeneity: Tau ² = 0.00; Chi ² =	= 3.47, df =	= 2 (P =	= 0.18); I ²	= 42%			
Test for overall effect: Z = 2.24 (P	= 0.02)						
2.1.3 Software or cognitive fusio	n						
Boesen, 2018	78	289	59	289	6.3%	0.07 [-0.00, 0.13]	
Exterkate, 2020	51	152	24	152	4.1%	0.18 [0.08, 0.27]	
Subtotal (95% CI)		441		441	10.4%	0.12 [0.01, 0.23]	◆
Total events	129		83				
Heterogeneity: Tau ² = 0.00; Chi ² =	= 3.49, df =	= 1 (P =	= 0.06); I ²	= 71%			
Test for overall effect: Z = 2.10 (P	= 0.04)						
Total (95% CI)		3795		3795	100.0%	0.05 [0.03, 0.07]	•
Total events	893		676				
Heterogeneity: Tau ² = 0.00; Chi ² =	= 26.84, di	f=17 (P = 0.06)	; I ² = 37	%		
Test for overall effect: Z = 4.47 (P	< 0.00001	I) Ì	,				-1 -0.5 U U.5 1
Test for subaroup differences: Ch	ni² = 3.03.	df = 2	(P = 0.22)). I z = 34	4.0%		

Appendix 7 - Figure 2.2: (<u>MPMRI-TB vs. TRUS-SB</u>) Risk differences in detection of <u>clinically significant</u> prostate cancer for previously negative men

Appendix 8: Subgroup Analysis (by type of TB)

	MPMR	-TB	TRUS	SB		Risk Difference	Risk Difference
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% Cl	M-H, Random, 95% Cl
1.1.1 Software fusion							
Alberts, 2017	14	74	15	74	4.0%	-0.01 [-0.14, 0.11]	+
Baco, 2016	33	86	31	86	3.5%	0.02 [-0.12, 0.17]	- _
Borkowetz, 2017	54	133	47	133	4.5%	0.05 [-0.06, 0.17]	- +-
Borkowetz, 2018	81	214	74	214	5.6%	0.03 [-0.06, 0.12]	
Filson, 2016	100	328	93	328	6.7%	0.02 [-0.05, 0.09]	+
Mannaerts, 2019	94	294	116	294	6.3%	-0.07 [-0.15, 0.00]	
Mariotti, 2016	113	246	84	246	5.9%	0.12 [0.03, 0.20]	
Meng, 2016	89	292	74	292	6.5%	0.05 [-0.02, 0.12]	+
Preiser, 2019	73	141	76	141	4.5%	-0.02 [-0.14, 0.10]	
Westoff, 2019 Subtotal (95% Cl)	115	307 2115	121	307 2115	6.3% 53.8 %	-0.02 [-0.10, 0.06] 0.02 [-0.02, 0.05]	 ◆
Total events	766		731				
Heterogeneity: Tau ² = 0.0 Test for overall effect: Z =	0; Chi ² = 0.93 (P =	13.58, 0.35)	df = 9 (P :	= 0.14)	; I² = 34%		
1.1.2 Cognitive fusion							
Castellucci, 2017	30	168	33	168	6.0%	-0.02 [-0.10, 0.07]	
Zalesky, 2019	64	211	84	211	5.6%	-0.09 [-0.19, -0.00]	
Zhang, 2017	59	224	35	224	6.4%	0.11 [0.03, 0.18]	
Subtotal (95% CI)		603		603	18.0 %	0.00 [-0.12, 0.12]	•
Total events Heterogeneity: Tau ^z = 0.0 Test for overall effect: Z =	153 1; Chi ^z = 0.00 (P =	12.21, 1.00)	152 df = 2 (P :	= 0.002	?); I² = 84%	,	
1.1.3 in-bore							
Van der Leest, 2019 Subtotal (95% CI)	159	626 626	146	626 626	7.9% 7.9 %	0.02 [-0.03, 0.07] 0.02 [-0.03, 0.07]	÷
Total events Heterogeneity: Not applic Test for overall effect: Z =	159 able 0.86 (P =	0.39)	146				
1.1.1 Software or compite	un fucior						
1.1.4 Software or cognit	ve lusior	0.54	75	0.54	0.400	0.007.0.00.0.403	
Rouviere, 2019 Subtotal (95% CI)	81	251 251	75	251 251	6.1% 6.1%	0.02 [-0.06, 0.10] 0.02 [-0.06, 0.10]	•
Total events Heterogeneity: Not applic Test for overall effect: Z =	81 able 0.58 (P =	0.56)	75				
1.1.5 RCTs Software fusi	ion						
Kasivisvanathan, 2018	95	252	64	248	6.1%	0.12 (0.04. 0.20)	_ -
Porpiglia, 2017 Subtotal (95% Cl)	47	107 359	19	105 353	4.3% 10.5%	0.26 [0.14, 0.38] 0.18 [0.05, 0.32]	
Total events	142		83				-
Heterogeneity: Tau ² = 0.0 Test for overall effect: Z =	1; Chi ² = 2.62 (P =	3.59, d 0.009)	f=1 (P=	0.06);1	²=72%		
1.1.6 Not reported							
Sakar, 2019 Subtotal (95% CI)	47	100 100	39	100 100	3.7% 3.7 %	0.08 [-0.06, 0.22] 0.08 [-0.06, 0.22]	•
Total events	47		39				
Heterogeneity: Not applic Test for overall effect: Z =	able 1.15 (P =	0.25)					
Total (95% CI)		4054		4048	100.0%	0.03 [0.00, 0.07]	•
Total events	1348		1226				
Heterogeneity: Tau ² = 0.0 Test for overall effect: Z = Test for subgroup differer	0; Chi ² = 1.97 (P = nces: Chi	46.43, 0.05) ² = 6.09	df = 17 (F	P = 0.00	101); I² = 60 D), I² = 17.9	3%	-1 -0.5 0 0.5 1 Favours [TRUS-SB] Favours [MPMRI-TB]

Appendix 8 - Figure 1.1: (<u>MPMRI-TB vs. TRUS-SB</u>) Risk differences in detection of <u>clinically significant</u> prostate cancer for biopsy-naïve men

	MPMR	I-TB	TRUS	SB		Risk Difference	Risk Difference
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% Cl	M-H, Random, 95% Cl
1.2.1 Software fusion							
Alberts, 2017	5	74	25	74	3.4%	-0.27 [-0.39, -0.15]	_ -
Borkowetz, 2017	11	133	8	133	6.1%	0.02 [-0.04, 0.08]	
Borkowetz, 2018	19	214	17	214	6.6%	0.01 [-0.04, 0.06]	+
Filson, 2016	45	328	84	328	6.2%	-0.12 [-0.18, -0.06]	
Mannaerts, 2019	16	294	44	294	6.9%	-0.10 [-0.14, -0.05]	-
Mariotti, 2016	20	246	59	246	6.0%	-0.16 [-0.22, -0.10]	
Meng, 2016	32	292	60	292	6.3%	-0.10 [-0.15, -0.04]	
Preiser, 2019	19	141	19	141	5.2%	0.00 [-0.08, 0.08]	
Westoff, 2019 Subtotal (95% Cl)	59	307 2029	82	307 2029	5.9% 52.6 %	-0.07 [-0.14, -0.01] - 0.08 [-0.13, -0.03]	•
Total events	226		398				
Heterogeneity: Tau* = 0.0 Test for overall effect: Z =	J0; Chi≝= : 3.15 (P =	43.95, : 0.002)	df = 8 (P 1	< 0.000)01); I* = 8	32%	
1.2.2 Cognitive fusion							
Castellucci, 2017	18	168	27	168	5.5%	-0.05 [-0.13, 0.02]	
Zalesky, 2019	10	211	28	211	6.6%	-0.09 [-0.14, -0.03]	
Zhang, 2017	40	224	43	224	5.6%	-0.01 [-0.09, 0.06]	-
Subtotal (95% CI)		603		603	17.7%	-0.06 [-0.10, -0.01]	•
Total events	68		98				
Heterogeneity: Tau ² = 0.0 Test for overall effect: Z =	00; Chi² = : 2.53 (P =	2.66, d : 0.01)	f=2(P=	0.26);	l² = 25%		
1.2.3 in-bore							
Van der Leest, 2019 Subtotal (95% CI)	88	626 626	155	626 626	7.1% 7.1 %	-0.11 [-0.15, -0.06] - 0.11 [-0.15, -0.06]	
Total events	88		155				
Heterogeneity: Not appli Test for overall effect: Z =	cable : 4.83 (P <	0.000	01)				
1.2.4 Software or cognit	ive fusior	1			~		
Rouviere, 2019 Subtotal (95% Cl)	14	251 251	49	251 251	6.4% 6.4%	-0.14 [-0.20, -0.08] - 0.14 [-0.20, -0.08]	•
Total events	14		49				
Heterogeneity: Not appli Test for overall effect: Z =	cable : 4.82 (P ≤	0.000	01)				
1.2.5 Not reported							
Sakar, 2019 Subtotal (95% CI)	7	100 100	16	100 100	4.8% 4.8 %	-0.09 [-0.18, -0.00] - 0.09 [-0.18, -0.00]	•
Total events	7		16				
Heterogeneity: Not appli Test for overall effect: Z =	cable : 2.01 (P =	0.04)					
1.2.6 RCTs Software fus	ion						
Kasivisvanathan, 2018	23	252	55	248	6.1%	-0.13 [-0.19, -0.07]	
Porpiglia, 2017 Subtotal (95% CI)	7	107 359	12	105 353	5.3% 11.4%	-0.05 [-0.13, 0.03] - 0.09 [-0.17, -0.01]	→
Total events	30		67				
Heterogeneity: Tau ² = 0.0 Test for overall effect: Z =	00; Chi ² = : 2.23 (P =	2.72, d : 0.03)	f=1 (P=	0.10);1	² = 63%		
Total (95% CI)		3968		3962	100.0%	-0.08 [-0.11, -0.05]	•
Total events	433		783				
Heterogeneity: Tau ² = 0.0	00; Chi ² =	56.56,	df = 16 (F	o.00 × 0)001); I ² =	72%	
Test for overall effect: Z =	: 5.55 (P < nces: Chi	0.0000 P = 6.02	01) 3. df = 5.0	P = 0.3	0), P = 17	.1%	Favours [MPMRI-TB] Favours [TRUS-SB]

Appendix 8 - Figure 1.2: (<u>MPMRI-TB vs. TRUS-SB</u>) Risk differences in detection of <u>clinically</u> <u>insignificant</u> prostate cancer for biopsy-naïve men

	MPMRI-T	B+SB	TB alo	ne		Risk Difference	Risk Difference
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% Cl	M-H, Random, 95% Cl
2.1.1 Software fusion							
Baco, 2016	38	86	33	86	2.7%	0.06 [-0.09, 0.21]	
Borkowetz, 2017	59	133	54	133	4.2%	0.04 [-0.08, 0.16]	
Borkowetz, 2018	94	214	81	214	6.8%	0.06 [-0.03, 0.15]	+
Filson, 2016	123	328	100	328	11.3%	0.07 [-0.00, 0.14]	
Preiser, 2019	84	141	73	141	4.4%	0.08 [-0.04, 0.19]	+ -
Tonttila, 2016	29	53	22	53	1.7%	0.13 [-0.06, 0.32]	
Westoff, 2019 Subtotal (95% CI)	142	307 1262	115	307 1262	9.8% 40.8 %	0.09 [0.01, 0.17] 0.07 [0.03, 0.11]	•
Total events	569		478				
Heterogeneity: Tau² = Test for overall effect: 2	0.00; Chi² = Z = 3.72 (P	= 0.98, d = 0.000;	f=6(P= 2)	0.99);	I ^z = 0%		
2.1.2 Cognitive fusion							
Castellucci, 2017	41	168	30	168	7.8%	0.07 [-0.02, 0.15]	
Zalesky, 2019	85	211	64	211	7.2%	0.10 (0.01, 0.19)	_ . _
Zhang, 2017	63	224	59	224	8.7%	0.02 [-0.06, 0.10]	
Subtotal (95% CI)		603		603	23.6%	0.06 [0.01, 0.11]	◆
Total events	189		153				
Heterogeneity: Tau ² = I	0.00; Chi ² =	= 1.75, d	f= 2 (P =	0.42);	I²=0%		
Test for overall effect: 2	Z= 2.29 (P	= 0.02)					
2.1.3 In-bore							
Van der Leest. 2019	190	626	159	626	24.0%	0.05 (-0.00, 0.10)	-
Subtotal (95% CI)		626		626	24.0%	0.05 [-0.00, 0.10]	◆
Total events	190		159				
Heterogeneity: Not app	olicable						
Test for overall effect: 2	Z=1.96 (P	= 0.05)					
2.1.4 Software or cog	nitive fusio	n					
Rouviere, 2019	94	251	81	251	8.5%	0.05 [-0.03, 0.14]	
Subtotal (95% CI)		251		251	8.5%	0.05 [-0.03, 0.14]	◆
Total events	94		81				
Heterogeneity: Not app	olicable						
Test for overall effect: 2	Z=1.22 (P	= 0.22)					
2.1.5 Not reported							
Sakar, 2019	51	100	47	100	3.1%	0.04 [-0.10, 0.18]	_
Subtotal (95% CI)		100		100	3.1%	0.04 [-0.10, 0.18]	*
Total events	51		47				
Heterogeneity: Not app	olicable						
Test for overall effect: 2	Z= 0.57 (P	= 0.57)					
Total (95% CI)		2842		2842	100.0%	0.06 [0.04, 0.08]	•
Total events	1093		918				
Heterogeneity: Tau ² = I	0.00; Chi² =	= 3.40, d	f= 12 (P	= 0.99)	; l² = 0%		
Test for overall effect: 2	Z = 4.90 (P	< 0.000	01)				
Test for subaroup diffe	rences: Ch	ni² = 0.68	3. df = 4 (l	P = 0.9	5), I ² = 0%		

Appendix 8 - Figure 2.1: (<u>MPMRI-TB+ TRUS-SB vs. MPMRI-TB</u>) Risk differences in detection of <u>clinically</u> <u>significant</u> prostate cancer for biopsy-naïve men

	MPMRI-T	B+SB	TB ald	one		Risk Difference	Risk Difference
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% Cl	M-H, Random, 95% Cl
2.2.1 Software fusion	1						
Borkowetz, 2018	30	214	19	214	11.2%	0.05 [-0.01, 0.11]	
Filson, 2016	71	328	45	328	11.8%	0.08 [0.02, 0.14]	
Tonttila, 2016	12	53	5	53	2.6%	0.13 [-0.01, 0.27]	
Westoff, 2019	78	307	59	307	9.7%	0.06 [-0.00, 0.13]	
Subtotal (95% CI)		902		902	35.2%	0.07 [0.03, 0.10]	•
Total events	191		128				
Heterogeneity: Tau ² =	0.00; Chi ² =	: 1.31, d	f= 3 (P =	0.73);	I²=0%		
Test for overall effect:	Z = 3.95 (P	< 0.000	1)				
2.2.2 Cognitive fusion	1						
Castellucci, 2017	28	168	18	168	8.1%	0.06 [-0.01, 0.13]	
Zalesky 2019	28	211	10	211	131%	0.09/0.03/0.141	-
Zhang 2017	50	224	40	224	8.0%	0.04 [-0.03 0.12]	_ _
Subtotal (95% CI)		603	40	603	29.2%	0.07 [0.03, 0.11]	♦
Total events	106		68				•
Heterogeneity: Tau ² =	0.00° Chi i	h 000:	f= 2 (P =	0.64)	I ^z = 0%		
Test for overall effect:	Z = 3.56 (P	= 0.000	4)	0.04),	- 0.0		
2.2.3 In hore							
Ven der Leest 2010	1.1.1	606	00	ene	10.00	0.00.00.05.0.4.01	+
Subtotal (95% CI)	144	626	00	626 626	18.0%	0.09 [0.05, 0.13]	•
Total events	144		88				
Heterogeneity: Not ap	plicable						
Test for overall effect:	Z= 4.10 (P	< 0.000	1)				
2.2.4 Software or cog	unitive fusio	n					
Rouviere, 2019	- 56	251	14	251	11.5%	0.17 [0.11, 0.23]	
Subtotal (95% CI)		251		251	11.5%	0.17 [0.11, 0.23]	•
Total events	56		14			. / .	-
Heterogeneity: Not an	nlicable						
Test for overall effect:	7 = 5.58 (P	< 0.000	01)				
			,				
2.2.5 Not reported							
Sakar, 2019	16	100	7	100	6.0%	0.09 [0.00, 0.18]	
Subtotal (95% CI)		100		100	6.0%	0.09 [0.00, 0.18]	\bullet
Total events	16		7				
Heterogeneity: Not ap	plicable						
Test for overall effect:	Z = 2.01 (P	= 0.04)					
Total (95% Cl)		2482		2482	100.0%	0.08 [0.06, 0.11]	•
Total events	513		305				
Heterogeneity: Tau ² =	0.00; Chi ² =	: 11.37.	df = 9 (P	= 0.25)	; I ² = 21%		
Test for overall effect:	Z = 7.28 (P	< 0.000	01)	.,			-1 -U.5 U U.5 1
Test for subaroup diff	erences: Ch	ni² = 9.23	2. df = 4 (P = 0.0	6). I ² = 56	.6%	ravouis (WirWiki-Iotoo) Favouis (IB alone)

Appendix 8 - Figure 2.2: (<u>MPMRI-TB+ TRUS-SB vs. MPNRI-TB</u>) Risk differences in detection of <u>clinically</u> <u>insignificant</u> prostate cancer for biopsy-naïve men

	MPMRI-TB+	SB	SB alo	ne		Risk Difference	Risk Difference
Study or Subgroup	Events	fotal	Events	Total	Weight	M-H, Random, 95% Cl	M-H, Random, 95% Cl
3.1.1 Software fusion							
Baco, 2016	38	86	31	86	2.7%	0.08 [-0.06, 0.23]	
Borkowetz, 2017	59	133	47	133	4.2%	0.09 (-0.03, 0.21)	—
Borkowetz, 2018	94	214	74	214	6.8%	0.09 (0.00, 0.19)	
Filson, 2016	123	328	93	328	11.2%	0.09 (0.02, 0.16)	
Preiser, 2019	84	141	76	141	4.3%	0.06 [-0.06, 0.17]	_ -
Westoff, 2019	142	307	121	307	9.4%	0.07 [-0.01, 0.15]	- - -
Subtotal (95% CI)		1209		1209	38.7%	0.08 [0.04, 0.12]	◆
Total events	540		442			. , .	*
Heterogeneity: Tau ² =	0.00° Chi ² = 0	45 df	= 5 (P =	0.99) 1	²= 0%		
Test for overall effect:	7 = 4 14 (P < f) .	0.00//			
			,				
3.1.2 Cognitive fusion							
Castellucci 2017	41	168	33	168	74%	0.051-0.04_0.141	
Zalesky 2019	85	211	84	211	6.6%	0.00 [0.04, 0.14]	
Zuicony, 2010 Zhang 2017	63	224	35	227	10.1%		
Subtotal (95% CI)	00	603		603	24.0%	0.06 [-0.01, 0.14]	•
Total evente	190		152				•
Heterogeneity: Tau ² –	0.00°.⊂bi≊ – 4.	22 df	- 2 (P -	0.12\.	Z- 53%		
Tect for overall effect:	7 – 1 72 /P – 1	. 22, ui 1 nov	-20-	0.12),1	- 33 %		
reation overall effect.	2 - 1.75 (1 - 0						
3.1.3 In-bore							
Van dar Loost 2010	100	626	146	969	2/106	0.07 [0.02.0.42]	-
Subtotal (95% CI)	190	626	140	626	24.1%	0.07 [0.02, 0.12]	Ā
Total quanta	100	020	1.40	020	24.170	0.07 [0.02, 0.12]	•
Hotorogonoity: Not on	190 Nicoblo		140				
Teet for everall effect:	piitable 7 - 2 02 /0 - 0	0.005					
restion overall effect.	2 – 2.02 (F – C	.005)					
3.1.4 Software or con	initive fusion						
Douvioro 2010	04	261	75	261	0 5 04	1910 1001001	
Subtotal (95% CI)	34	251	75	251	0.0% 85%	0.08[-0.01] 0.16]	▲
Total overte	04	201	75	201	0.070	0.00[-0.01, 0.10]	•
Hotorogonoity: Not on	94 plicoblo		70				
Test for everall effect:	piicable 7 - 1 00 /D - 0	0.071					
restior overall effect.	Z = 1.80 (P = 0	.07)					
3 1 5 Not reported							
Salver 2010	54	100	20	400	2.400	04070000000	
Sakar, 2019 Subtotal (05% CI)	51	100	39	100	3.1%	0.12[-0.02, 0.20]	
Subtotal (95% CI)	54	100	20	100	J.170	0.12[-0.02, 0.20]	
Tutai events	01 Nicobio		39				
Heterogeneity, Not app	piicapie z 4 zo (p c						
l'estitor overall'effect.	Z = 1.72 (P = C	1.09)					
3.4.6 DCT coffware fu	eion						
J. I.O KCT SORWare Iu		50		~~	4 700		
Tonπila, 2016 Subtatel (05% CI)	29	53	27	60	1.7%	0.10 [-0.09, 0.28]	
Sublotal (95% CI)	~~	55	~-	00	1.7 %	0.10[-0.09, 0.28]	
i otal events			27				
Heterogeneity: Not app	plicable						
i est for overall effect: 2	Z = 1.04 (P = 0	1.30)					
Total (05% Ch		2042		2040	100.0%	0.00 0.00 0.0 401	A
Total (95% CI)	4.0	2842		2849	100.0%	0.08 [0.05, 0.10]	▼
i otal events	1093		881				
Heterogeneity: Tau ² =	0.00; Chi ² = 5.	26, df	= 12 (P =	= 0.95)	; I² = 0%		-1 -0.5 0 0.5 1
Test for overall effect: 2	Z = 6.25 (P < 0	0.0000	11)				Favours [TRUS-SB] Favours [MPMRI-TB+SB]
Test for subaroup diffe	erences: Chi ^z :	= 0.69	l. df = 5 (F	P = 0.98	3). I ² = 0%	6	· · · · · · · · · · · · · · · · · · ·

Appendix 8 - Figure 3.1: (<u>MPMRI-TB+ TRUS-SB vs. TRUS-SB</u>) Risk differences in detection of <u>clinically</u> <u>significant</u> prostate cancer for biopsy-naïve men

	MPMRI-TB	+SB	SB alo	ne		Risk Difference	Risk Difference
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% Cl	M-H, Random, 95% Cl
3.2.1 Software fusion							
Borkowetz, 2018	30	214	17	214	13.4%	0.06 [0.00, 0.12]	
Filson, 2016	71	328	84	328	11.1%	-0.04 [-0.10, 0.03]	
Westoff, 2019	78	307	82	307	9.7%	-0.01 [-0.08, 0.06]	<u>+</u>
Subtotal (95% CI)		849		849	34.2%	0.00 [-0.06, 0.07]	•
Total events	179		183				
Heterogeneity: Tau ² =	0.00; Chi ^z = 1	5.90, d	f=2(P=	0.05);1	r = 66%		
Test for overall effect: J	Z = 0.13 (P =	0.90)					
3 2 2 Cognitive fusion							
Costollussi, 2017	20	100	27	100	7 50	0.04 (0.07 0.00)	
Zalocky 2010	20	211	27	211	11 706		
Zaleský, 2015 Zhona, 2017	20	211	40	211	0.004		
Subtotal (95% Cl)	50	603	43	603	27.4%	0.02 [-0.02, 0.06]	•
Total events	106		95	000		5152 [5152, 5155]	Ĭ
Heterogeneity: Tau ² =	0.00° Chi² = 1	0 22 d	f=2(P=	0.89).1	F=0%		
Test for overall effect: 1	Z = 0.81 (P =	0.42)		/1			
		,					
3.2.3 In-bore							
Van der Leest, 2019	144	626	155	626	20.9%	-0.02 [-0.06, 0.03]	-
Subtotal (95% CI)		626		626	20.9 %	-0.02 [-0.06, 0.03]	•
Total events	144		155				
Heterogeneity: Not ap	olicable						
Test for overall effect: 2	Z = 0.73 (P =	0.47)					
3.2.4 Software or cog	nitive fusion	1					
Rouviere, 2019	56	251	49	251	9.2%	0.03 [-0.04, 0.10]	Ť
Subtotal (95% CI)	50	251		201	9.2%	0.05 [-0.04, 0.10]	–
i otal events	50		49				
Teet for everall effect:	JIICADIE 7 - 0 77 /0 -	0.44					
restior overall effect.	2 = 0.77 (F =	0.44)					
3.2.5 Not reported							
Sakar 2019	16	100	16	100	4.5%	0.00.00.00.00.00.00.00.00.00.00.00.00.0	
Subtotal (95% CI)		100		100	4.5%	0.00 [-0.10, 0.10]	◆
Total events	16		16				
Heterogeneity: Not app	olicable						
Test for overall effect: 2	Z = 0.00 (P =	1.00)					
3.2.6 RCT software fu	sion						
Tonttila, 2016	5	53	7	60	3.7%	-0.02 [-0.14, 0.09]	
Subtotal (95% CI)		53		60	3.7%	-0.02 [-0.14, 0.09]	-
Total events	5		7				
Heterogeneity: Not ap	olicable						
Test for overall effect: 2	Z = 0.39 (P =	0.70)					
Total (95% CI)		2/182		2/180	100.0%	0.01[0.02.0.03]	
Total events	EUG	2402	60 <i>6</i>	2403	100.0%	0.01[-0.02, 0.03]	Ť
Heterogeneity: Tau2-	000 000.⊂bi≇–1	774 4	000 f= Q/D =	0.56\-1	P= ∩04		
Test for overall effect:	0.00, Cm = 7 = 0.48 (P =	n 63) 1 63)	- 3 (F -	0.00),1	- 0 %		-1 -0.5 0 0.5 1
Test for subaroun diffe	erences: Chi	²= 1.84	4. df = 5./8	P = 0.8	7), ² = 0%	6	Favours [MPMRI-TB+SB] Favours [SB alone]
. Lot 10, Sabaroab ante		1.01		0.0		-	

Appendix 8 - Figure 3.2: (<u>MPMRI-TB+ TRUS-SB vs. TRUS-SB</u>) Risk differences in detection of <u>clinically</u> <u>insignificant</u> prostate cancer for biopsy-naïve men

	MPMR	-TB	TRUS-	SB		Risk Difference	Risk Difference
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% Cl	M-H, Random, 95% Cl
4.1.1 Software fusion	n						
Alberts, 2017	3	84	4	84	9.0%	-0.01 [-0.07, 0.05]	-
Arsov, 2015	27	104	26	104	3.5%	0.01 [-0.11, 0.13]	
Borkowetz, 2017	139	445	106	445	9.3%	0.07 [0.02, 0.13]	-
Filson, 2016	60	324	48	324	9.5%	0.04 [-0.02, 0.09]	+
Lian, 2017	22	101	13	101	4.4%	0.09 [-0.01, 0.19]	+
Mannaerts, 2019	19	159	23	159	7.1%	-0.03 [-0.10, 0.05]	
Mariotti, 2016	32	143	18	143	5.7%	0.10 [0.01, 0.19]	
Meng, 2016	28	172	16	172	7.6%	0.07 [-0.00, 0.14]	
Preiser, 2019	25	78	24	78	2.5%	0.01 [-0.13, 0.16]	
Say, 2016	33	143	27	143	5.1%	0.04 [-0.05, 0.14]	
Westoff, 2019 Subtotal (95% Cl)	65	210 1963	64	210 1963	5.6% 69.3%	0.00 [-0.08, 0.09] 0.04 [0.01, 0.06]	- <u>+</u>
Total events	453		369				ľ
Heterogeneity: Tau ² =	:0.00°.Ch	i ² = 11 ⋅	54 df=1	0 (P = (1 32): I ž =	13%	
Test for overall effect:	7 = 2.81	(P = 0 0	04, 01 - 1 105)	0(1-1	5.52), 1 =	13.0	
reation overall effect.	2-2.01	(i = 0.c	,03)				
4.1.2 Cognitive fusion	n						
Sidana, 2018	205	779	147	779	12.7%	0.07 [0.03, 0.12]	+
Zalesky, 2019	47	174	44	174	5.2%	0.02 [-0.08, 0.11]	
Subtotal (95% CI)		953		953	17.9%	0.06 [0.01, 0.11]	◆
Total events	252		191				
Heterogeneity: Tau ² =	: 0.00; Ch	i ^z = 1.2	3, df = 1 (P = 0.2	7); l² = 19	%	
Test for overall effect:	Z = 2.55 ((P = 0.0)1)				
4.1.3 Software or co	anitive fue	sion					
Roecon 2018	79	799	59	280	7 7 %	0.07 [.0.00.0.13]	
Evterkate 2020	51	162	24	152	5.0%		
Subtotal (95% CI)	51	441	24	441	12.8%	0.12 [0.01, 0.23]	•
Total events	129		83				•
Heterogeneity: Tau ² =	: 0.00: Ch	i ² = 3.4	9 df=1 (P = 0.0	6): I≧ = 71	96	
Test for overall effect:	7 = 2.00	(P = 0.0	0, 0, = , , 14)	0.0	0/11 = 11	~	
restion overall ellect.	2-2.10	(i = 0.c	,-,				
Total (95% CI)		3357		3357	100.0 %	0.05 [0.03, 0.07]	◆
Total events	834		643				
Heterogeneity: Tau ² =	: 0.00; Ch	i² = 21.8	89, df = 1	4 (P = 0	0.08); I² =	36%	
Test for overall effect:	Z = 3.97 ((P < 0.0	001)				Eavours ITRUS-SB1 Eavours IMPMRI-TB1
Test for subaroup diff	ferences:	Chi ² = 1	2.54. df=	2 (P =	0.28). I ? =	21.2%	

Appendix 8 - Figure 4.1: (<u>MPMRI-TB vs. TRUS-SB</u>) Risk differences in detection of <u>clinically significant</u> prostate cancer for men with prior negative biopsy for cancer

	MPMR	-TB	TRUS-	SB		Risk Difference	Risk Difference
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% Cl	M-H, Random, 95% Cl
4.2.1 Software fusion	n						
Alberts, 2017	6	84	20	84	3.8%	-0.17 [-0.27, -0.06]	_
Arsov, 2015	8	104	10	104	5.8%	-0.02 [-0.10, 0.06]	
Borkowetz, 2017	37	445	36	445	9.9%	0.00 [-0.03, 0.04]	+
Filson, 2016	23	324	48	324	8.6%	-0.08 [-0.12, -0.03]	-
Lian, 2017	9	101	14	101	4.9%	-0.05 [-0.14, 0.04]	
Mannaerts, 2019	5	159	24	159	7.1%	-0.12 [-0.18, -0.06]	
Mariotti, 2016	17	143	41	143	4.7%	-0.17 [-0.26, -0.08]	
Meng, 2016	14	172	16	172	7.3%	-0.01 [-0.07, 0.05]	
Preiser, 2019	5	78	7	78	5.2%	-0.03 [-0.11, 0.06]	
Say, 2016	16	143	24	143	5.5%	-0.06 [-0.14, 0.02]	
Westoff, 2019	26	210	43	210	6.3%	-0.08 [-0.15, -0.01]	
Subtotal (95% CI)		1963		1963	69.0%	-0.06 [-0.10, -0.03]	•
Total events	166		283				
Heterogeneity: Tau ² =	: 0.00; Ch	i² = 29.	33, df = 11	D (P = (0.001); I ř :	= 66%	
Test for overall effect:	Z = 3.61	(P = 0.0)003)				
4.0.0.0							
4.2.2 Cognitive fusion	1						
Sidana, 2018	63	779	118	779	10.4%	-0.07 [-0.10, -0.04]	+
Zalesky, 2019	12	174	24	174	6.9%	-0.07 [-0.13, -0.01]	
Subtotal (95% CI)		953		953	17.3%	-0.07 [-0.10, -0.04]	•
Total events	75		142				
Heterogeneity: Tau ² =	: 0.00; Ch	i ² = 0.0	0,df=1(P = 0.9	6); I² = 09	6	
l est for overall effect:	Z = 4.86 i	(P < U.U	JUUU1)				
4.2.3 Software or co	anitive fu	sion					
Boesen 2018	18	289	49	289	8.2%	-0.11 [-0.16 -0.06]	-
Exterkate 2020	20	152	25	152	5.5%	-0.03[-0.11_0.05]	
Subtotal (95% CI)	20	441	20	441	13.7%	-0.08 [-0.15, -0.00]	•
Total events	38		74				•
Heterogeneity: Tau ² =	: 0.00: Ch	i [≥] = 2.3	9. df = 1.(P = 0.1	2): I² = 58	1%	
Test for overall effect:	Z = 2.08	(P = 0.0)4)	0.1	-,,	~~~	
			,				
Total (95% CI)		3357		3357	100.0%	-0.07 [-0.09, -0.04]	•
Total events	279		499				
Heterogeneity: Tau² =	0.00; Ch	i² = 34.	11, df = 1-	4 (P = 0	0.002); I ² :	= 59%	
Test for overall effect:	Z = 5.15	(P < 0.0	00001)				Favoure [MPMRLTR] Favoure [TRU9-98]
Test for subaroup diff	ferences:	Chi²=	0.12. df=	2 (P =	0.94). I ^z =	:0%	

Appendix 8 - Figure 4.2: (<u>MPMRI-TB vs. TRUS-SB</u>) Risk differences in detection of <u>clinically</u> <u>insignificant</u> prostate cancer for for men with prior negative biopsy for cancer

	MPMRI-T	B+SB	TB alo	ne		Risk Difference	Risk Difference
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% Cl	M-H, Random, 95% Cl
5.1.1 Software fusion	1						
Borkowetz, 2017	165	445	139	445	21.0%	0.06 [-0.00, 0.12]	⊢ ∎
Filson, 2016	75	324	60	324	20.8%	0.05 [-0.02, 0.11]	+
Lian, 2017	25	101	22	101	6.0%	0.03 [-0.09, 0.15]	_
Preiser, 2019	29	78	25	78	3.6%	0.05 [-0.10, 0.20]	
Say, 2016	40	143	33	143	8.0%	0.05 [-0.05, 0.15]	
Westoff, 2019	80	210	65	210	9.9%	0.07 [-0.02, 0.16]	+ <u>-</u>
Subtotal (95% CI)		1301		1301	69.2 %	0.05 [0.02, 0.09]	•
Total events	414		344				
Heterogeneity: Tau² =	0.00; Chi²	= 0.40, (df = 5 (P =	= 1.00);	I²=0%		
Test for overall effect:	Z = 3.02 (P	= 0.003	3)				
E 4 3 Comitive fueion							
5.1.2 Cognitive rusion		4.50		4.50	7.00		
Exterkate, 2020	53	152	49	152	7.2%	0.03 [-0.08, 0.13]	
Zaleský, 2019 Subtotal (05% CI)	61	326	47	326	8.6% 15.0%	0.08 [-0.02, 0.18]	
Subtotal (95% CI)		320		320	13.6%	0.00 [-0.02, 0.15]	
l otal events	114	0.55	90	0.400	17 0.00		
Teet for everall effect	0.00, CHF 7 - 4 60 (D	= 0.55,1	ai = 1 (P =	= 0.46),	1-= 0%		
restior overall ellect.	Z = 1.53 (P	= 0.13)					
5.1.3 Software or cog	initive fusi	on					
Boesen, 2018	88	289	78	289	14.9%	0.03 [-0.04, 0.11]	
Subtotal (95% CI)		289		289	14.9%	0.03 [-0.04, 0.11]	◆
Total events	88		78				
Heterogeneity: Not ap	plicable						
Test for overall effect:	Z = 0.92 (P	= 0.36)					
Total (95% CI)		1916		1916	100.0%	0.05 [0.02, 0.08]	•
Total events	616		518				
Heterogeneity: Tau² =	0.00; Chi²	= 1.16, i	df = 8 (P =	= 1.00);	I² = 0%		
Test for overall effect:	Z = 3.47 (P	= 0.000)5)				Favours (TB alone) Favours (MPMRI-TB+SB)
Test for subaroup diff	erences: C	hi² = 0.2	2. df = 2.	(P = 0.9	30). I ? = 0'	%	

Appendix 8 - Figure 5.1: (<u>MPMRI-TB+TRUS-SB vs. MPMRI-TB</u>) Risk differences in detection of <u>clinically</u> <u>significant</u> prostate cancer for for men with prior negative biopsy for cancer

	MPMRI-TB+SB		TB alone		Risk Difference		Risk Difference
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% Cl	M-H, Random, 95% Cl
5.2.1 Software fusion	1						
Filson, 2016	47	324	23	324	26.8%	0.07 [0.03, 0.12]	-
Lian, 2017	19	101	9	101	6.8%	0.10 [0.00, 0.19]	
Say, 2016	34	143	16	143	8.0%	0.13 [0.04, 0.21]	
Westoff, 2019	39	210	26	210	12.7%	0.06 [-0.01, 0.13]	
Subtotal (95% CI)		778		778	54.3%	0.08 [0.05, 0.12]	◆
Total events	139		74				
Heterogeneity: Tau² =	0.00; Chi²	= 1.55, i	df = 3 (P =	= 0.67)	²=0%		
Test for overall effect:	Z = 4.82 (P	< 0.000	001)				
5 0 0 0 ·······························							
5.2.2 Cognitive fusion	1						
Zalesky, 2019 Subtatal (05%, CD	23	174	12	174	15.3%	0.06 [0.00, 0.13]	T
Subtotal (95% CI)		174		1/4	15.3%	0.06 [0.00, 0.13]	▼
l otal events	23		12				
Heterogeneity: Not ap	plicable						
l est for overall effect:	Z = 1.97 (P	= 0.05)	I				
5.2.3 Software or cog	jnitive fusi	on					
Boesen, 2018	55	289	18	289	21.4%	0.13 [0.07, 0.18]	-
Exterkate, 2020	28	152	20	152	9.0%	0.05 [-0.03, 0.13]	
Subtotal (95% CI)		441		441	30.4 %	0.10 [0.02, 0.17]	◆
Total events	83		38				
Heterogeneity: Tau² =	0.00; Chi²	= 2.32,	df = 1 (P =	= 0.13)	i² = 57%		
Test for overall effect:	Z = 2.60 (P	= 0.009	3)				
Total (95% CI)		1393		1393	100.0%	0.09 [0.06, 0.11]	•
Total events	245		124				
Heterogeneity: Tau ² =	0.00; Chi ²	= 5.14.	df = 6 (P =	= 0.53);	; I ² = 0%		
Test for overall effect: $Z = 6.88$ (P < 0.00001)							
Test for subgroup differences: Chi ² = 0.49, df = 2 (P = 0.78), l ² = 0%, Favours [IMPMRI-TB+SB] Favours [IMPMRI-TB+SB]							

Appendix 8 - Figure 5.2: (<u>MPMRI-TB+TRUS-SB vs. MPMRI-TB</u>) Risk differences of <u>clinically insignificant</u> prostate cancer for men with prior negative biopsy for cancer

	MPMRI-TB+SB		SB alone		Risk Difference		Risk Difference		
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% Cl	M-H, Random, 95% Cl		
6.1.1 Software fusion	I								
Borkowetz, 2017	165	445	106	445	20.9%	0.13 [0.07, 0.19]			
Filson, 2016	75	324	48	324	20.7%	0.08 [0.02, 0.14]			
Lian, 2017	25	101	13	101	6.6%	0.12 [0.01, 0.23]			
Preiser, 2019	29	78	24	78	3.4%	0.06 [-0.08, 0.21]			
Say, 2016	40	143	27	143	7.9%	0.09 [-0.01, 0.19]			
Westoff, 2019	80	210	64	210	9.1%	0.08 [-0.01, 0.17]			
Subtotal (95% CI)		1301		1301	68.6 %	0.10 [0.07, 0.13]	•		
Total events	414		282						
Heterogeneity: Tau ² =	Heterogeneity: Tau ² = 0.00; Chi ² = 2.08, df = 5 (P = 0.84); l ² = 0%								
Test for overall effect:	Z = 5.98 (P	< 0.000)01)						
6.1.2 Cognitive fusion	I								
Zalesky, 2019	61	174	44	174	8.1%	0.10 [0.00, 0.19]			
Subtotal (95% CI)		174		174	8.1%	0.10 [0.00, 0.19]	◆		
Total events	61		44						
Heterogeneity: Not ap	plicable								
Test for overall effect: .	Z = 2.00 (P	= 0.05)							
6.1.3 Software or cog	intive fusio	n							
Boesen, 2018	88	289	59	289	15.0%	0.10 (0.03, 0.17)			
Exterkate, 2020	53	152	24	152	8.2%	0.19 [0.10, 0.29]			
Subtotal (95% CI)		441		441	23.3%	0.14 [0.05, 0.23]	◆		
Total events	141		83						
Heterogeneity: Tau ² =	0.00; Chi ²	= 2.23, 0	df = 1 (P =	= 0.14);	I² = 55%				
Test for overall effect: .	Z = 3.11 (P	= 0.002	n `						
	`								
Total (95% CI)		1916		1916	100.0%	0.11 [0.08, 0.14]	•		
Total events	616		409						
Heterogeneity: Tau ² =	Heterogeneity: Tau ² = 0.00; Chi ² = 5.25, df = 8 (P = 0.73); i ² = 0%								
Test for overall effect: Z = 7.73 (P < 0.00001)									
Test for subgroup differences: Chi ² = 0.68 df = 2 (P = 0.71) l ² = 0%									

Appendix 8 - Figure 6.1: (<u>MPMRI-TB+TRUS-SB vs. TRUS-SB</u>) Risk differences in detection of <u>clinically</u> <u>significant</u> prostate cancer for men with prior negative biopsy for cancer

	MPMRI-TB+SB		SB alone		Risk Difference		Risk Difference
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% Cl	M-H, Random, 95% Cl
6.2.1 Software fusion	1						
Filson, 2016	47	324	48	324	25.7%	-0.00 [-0.06, 0.05]	+
Lian, 2017	19	101	14	101	7.4%	0.05 [-0.05, 0.15]	- + •
Say, 2016	34	143	24	143	8.9%	0.07 [-0.02, 0.16]	
Westoff, 2019	39	210	43	210	13.3%	-0.02 [-0.09, 0.06]	
Subtotal (95% CI)		778		778	55.2 %	0.01 [-0.03, 0.05]	•
Total events	139		129				
Heterogeneity: Tau² =	0.00; Chi ² :	= 2.96, i	df = 3 (P =	= 0.40);	I² = 0%		
Test for overall effect:	Z = 0.62 (P	= 0.53)					
6.2.2 Cognitive fusion	1						
Zalesky, 2019	23	174	24	174	14.8%	-0.01 [-0.08, 0.07]	T
Subtotal (95% CI)		174		174	14.8%	-0.01[-0.08, 0.07]	—
Total events	23		24				
Heterogeneity: Not ap	plicable						
Test for overall effect:	Z = 0.16 (P	= 0.88)					
6.2.3 Software or cog	nitive fusio	on					
Boesen, 2018	55	289	49	289	19.5%	0.02 [-0.04, 0.08]	-
Exterkate, 2020	28	152	25	152	10.5%	0.02 [-0.07, 0.11]	+
Subtotal (95% CI)		441		441	30.0%	0.02 [-0.03, 0.07]	◆
Total events	83		74				
Heterogeneity: Tau² =	0.00; Chi ² :	= 0.00, i	df = 1 (P =	= 0.98);	l² = 0%		
Test for overall effect:	Z = 0.79 (P	= 0.43)					
Total (95% CI)		1393		1393	100.0%	0.01 [-0.02, 0.04]	•
Total events	245		227				
Heterogeneity: Tau ² =	0.00; Chi ² :	= 3.30, i	df = 6 (P =	= 0.77);	I² = 0%		
Test for overall effect:	Z=0.84 (P	= 0.40)					Favours [MPMRI-TB+SB] Favours [SB alone]
Test for subaroup diff	erences: Cl	hi ² = 0.3	34. df = 2.	(P = 0.8)	$(4), I^2 = 0^{\circ}$	%	

Appendix 8 - Figure 6.2: (<u>MPMRI-TB+TRUS-SB vs. TRUS-SB</u>) Risk differences in detection of <u>clinically</u> <u>insignificant</u> prostate cancer for men with prior negative biopsy for cancer